For the best implementation of bubble sort discussed in class, an approximation of the number of comparisons and exchanges to sort an array of size $N$ is:

a) $N^2/4$ comparisons, $N^2/4$ exchanges  
   b) $N^2/2$ comparisons, $N^2/2$ exchanges  
   c) $N^2/2$ comparisons, $N^2/4$ exchanges  
   d) $N^2/4$ comparisons, $N^2/2$ exchanges  
   e) $N^2/2$ comparisons, $N$ exchanges

For the best implementation of selection sort discussed in class, an approximation of the number of comparisons and exchanges to sort an array of size $N$ is:

a) $N^2/4$ comparisons, $N^2/4$ exchanges  
   b) $N^2/2$ comparisons, $N^2/2$ exchanges  
   c) $N^2/2$ comparisons, $N^2/4$ exchanges  
   d) $N^2/4$ comparisons, $N^2/2$ exchanges  
   e) $N^2/2$ comparisons, $N$ exchanges

For the best implementation of insertion sort discussed in class, an approximation of the number of comparisons and exchanges to sort an array of size $N$ is:

a) $N^2/4$ comparisons, $N^2/4$ exchanges  
   b) $N^2/2$ comparisons, $N^2/2$ exchanges  
   c) $N^2/2$ comparisons, $N^2/4$ exchanges  
   d) $N^2/4$ comparisons, $N^2/2$ exchanges  
   e) $N^2/2$ comparisons, $N$ exchanges

For the implementation of quick sort discussed in class, the worst case complexity for sorting an array of size $N$ is:

a) $O(1)$  
   b) $O(\log N)$  
   c) $O(N)$  
   d) $O(N\log N)$  
   e) $O(N^2)$  
   f) $O(2^N)$

For the implementation of quick sort discussed in class, the average case complexity for sorting an array of size $N$ is:

a) $O(1)$  
   b) $O(\log N)$  
   c) $O(N)$  
   d) $O(N\log N)$  
   e) $O(N^2)$  
   f) $O(2^N)$

For the implementation of heap sort discussed in class, the worst case complexity for sorting an array of size $N$ is:

a) $O(1)$  
   b) $O(\log N)$  
   c) $O(N)$  
   d) $O(N\log N)$  
   e) $O(N^2)$  
   f) $O(2^N)$

For the implementation of a heap discussed in class, the worst case complexity for inserting a single item into the heap of size $N$ is:

a) $O(1)$  
   b) $O(\log N)$  
   c) $O(N)$  
   d) $O(N\log N)$  
   e) $O(N^2)$  
   f) $O(2^N)$
2) Assume the following pseudocode implementation of **Partition** and **QuickSort**:

**Algorithm Partition(a, left, right)**

Input: array a of distinct elements, integers left and right
Output: integer

p <- a[right], lhs <- left, rhs <- right-1
while lhs ≤ rhs do
    while lhs ≤ rhs and a[lhs] ≤ p do
        lhs = lhs + 1
    while rhs ≥ lhs and a[rhs] ≥ p do
        rhs = rhs -1
    if lhs < rhs then
        swap(a[lhs],a[rhs])
    swap(a[lhs],a[right])
return lhs

**Algorithm QuickSort(a[], left, right)**

Input: array a of distinct elements, integers left and right
Output: sorted array a

if left ≥ right then return
pivot <- Partition(a, left, right)
QuickSort(a, left, pivot-1)
QuickSort(a, pivot+1, right)

Show the effect of **QuickSort** on the following array a. Show the array after each call to **Partition** and indicate the final placement of **pivot**s.

*a = {13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21}*

<table>
<thead>
<tr>
<th>Init</th>
<th>13</th>
<th>19</th>
<th>9</th>
<th>5</th>
<th>12</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>11</th>
<th>2</th>
<th>6</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>It1</td>
<td></td>
</tr>
<tr>
<td>It2</td>
<td></td>
</tr>
<tr>
<td>It3</td>
<td></td>
</tr>
<tr>
<td>It4</td>
<td></td>
</tr>
<tr>
<td>It5</td>
<td></td>
</tr>
<tr>
<td>Itn</td>
<td></td>
</tr>
</tbody>
</table>

3) Assume that Quicksort uses the last item in the list as the pivot (as described earlier):

a) Give a list of 10 integers representing the worst-case scenario.

b) Give a list of 10 integers representing the best-case scenario.
4) Text, Problem C-10.10, Page 528. For simplicity, assume that each candidate receives a unique number of votes. The function description is as follows:

\begin{verbatim}
Algorithm findPrez(S,n)
    Input: integer array S of size n, integer n
    Output: integer winner
\end{verbatim}