
N64 Controller
Dmitry Bondarenko
Willie Chen
Erik Meade
Henry Wang



Agenda
● Nintendo 64 Background & Usage
● Interface Introduction
● Communication Protocol Overview
● Controller Peripherals
● Possible Implementation Scheme

2



N64 Console Background
● Gaming console released by 

Nintendo in 1996
● 64-bit processor @ 93.75 MHz, 

562.5 MB/s bus, 640x480 px, 
4MB D-RAM

● Used cartridges to store and 
load games

● One of the first consoles to use 
analog stick for navigation

https://commons.wikimedia.org/wiki/User:Evan-Amos/VOGM/N64

3



Example Projects

4



Example Projects

5



Example Projects

6

http://www.youtube.com/watch?v=SqSZ_cZzep0


N64 Controller Motivation
● Project involving mobile robots
● Intuitive and convenient 

controller with analog stick
● Ample control options
● Less complex and more 

documented than modern 
controllers like PS and XBox

● Familiarity and well-known 
interface

http://www.gratuitousscience.com/?p=3033
7



N64 Interface Introduction
● 3 Pins

○ Vref (3.3V)
○ Ground
○ Data/Clock Line, open collector

● Single data wire interface
○ Every falling edge initiates a bit transaction

■ Self clocking
■ Similar to uart, goes at a defined rate

○ ~2 us after the falling edge, read bit (0/1) 
from the line

http://ezhid.sourceforge.net/n64pad.html

8



N64 Interface Introduction
● Open collector

○ Allows data to travel through the data wire to and from the controller
○ Used instead of a tri-state

https://www.eecs.umich.edu/courses/eecs270/lectures/270L23NotesF14.pdf

9



N64 Interface Introduction
● For each bit, the transaction 

always begins/ends with a falling 
edge

● The one bit is low for 1 us after 
the falling edge then goes high 
for 3 us

● The zero bit stays low for 3 after 
the falling edge then goes high 
for 1 us

http://www.pieter-jan.com/node/10

10



● Three phases in the communication sequence
○ Requesting, receiving, idling

● Console is the master, controller is the slave
● Request: the console requests data from controller
● Receive: either the controller or the console writes on the data line
● Idle: the data line then becomes idle

N64 Communication 

http://www-inst.eecs.berkeley.edu/~cs150/sp01/Labs/lablecckpt1.pdf
11



Sending commands to the N64 controller
● The console initiates transactions
● Commands are either a read or a write
● Example of initiating a button status read transaction (0x01)
● Ends with Stop bit

https://www.eecs.umich.edu/courses/eecs270/lectures/270L23NotesF14.pdf 12



Commands
Command Description
0x00 Request info (Rumble Pak or mem card?)
0x01 Read button values
0x02 Read from memory pack
0x03 Write to memory pack
0x04 Read EEPROM
0x05 Write EEPROM
0xFF Reset

13



Controller Response
● Controller responds with button statuses
● Bits 0-7, 10-15: push buttons, active-high
● Bits 16-31: analog stick coordinates, represented as a 

two’s complement integer between -80 and 80
● Transaction ends with a stop bit

http://www.pieter-jan.com/node/10

https://www.eecs.umich.edu/courses/eecs270/lectures/270L23NotesF14.pdf

14



Controller Response
● Controller responds with button statuses
● Bits 0-7, 10-15: push buttons, active-high
● Bits 16-31: analog stick coordinates, represented as a 

two’s complement integer between -80 and 80
● Transaction ends with a stop bit

http://www.pieter-jan.com/node/10

https://www.eecs.umich.edu/courses/eecs270/lectures/270L23NotesF14.pdf

15



Controller “Peripherals”
● Memory slot can have either Rumble Pak or 

memory card
● Memory slot:

○ Read: 0x02
○ Write: 0x03

● Send 0x00 to know if it’s a Rumble Pak or 
memory card

● If Rumble Pak
○ Send 32 byte block of 01’s to turn on
○ Send 32 byte block of 00’s to turn off

https://en.wikipedia.org/wiki/Rumble_Pak

16



Interfacing with the N64
● The FPGA periodically sends a request byte to the controller (polling)
● After sending the request byte, FPGA will process incoming data

○ Use the single data wire as a clock to synchronize the reading of the bits sent by the 
controller

○ Use the system clock to specify reading exactly 2 us after the falling edge of the data wire

● Then enter idle state and wait for the next time to poll the controller

17



Interfacing with the N64
● After receiving data from the controller, check for changes
● Check by comparing with previous button status
● If yes, trigger an interrupt
● Otherwise, enter idle state
● Button status data will be available to the Cortex M3 via MMIO

18



Questions?

19


