Video Graphics Array (VGA)

Chris Knebel
Ian Kaneshiro
Josh Knebel
Nathan Riopelle

Image Source: Google Images
Contents

● History
 ○ Design goals
 ○ Evolution

● The protocol
 ○ Signals
 ○ Timing
 ○ Voltages

● Our implementation (briefly)

● VGA settings and configurations

● Modern alternatives (HDMI)
History

From Analog to LCD
Early VGA

- Introduced by IBM in 1987
- Resolution: 640x480
- Designed specifically for analog displays

https://1000logos.net/ibm-logo/
Analog Displays

- Used Cathode Ray Tubes (CRT)
- Electron beam activates pixels
- Scans across the screen in rows
- Works similar to a typewriter
Analog Displays

Backup If Video Doesn’t Work

Incoming Data [pixel 1331200, …, pixel 2, pixel 1] → Receiver

Left to Right, Top to Bottom
(just like you read)
LCD Displays

- Replaced analog displays
- Allows for much higher resolutions
- Uses digital data
- Most support VGA

The Protocol

Signals, Timing, Specifications
Horizontal/Vertical Scan

- Scan speed determined by screen size and refresh rate
- Sync pulses moderate scan speed

http://www.eng.ucy.ac.cy/theocharides/Courses/ECE664/VGA.pdf
http://www.eecg.toronto.edu/~tm4/rgbout.html
Timing

30 second problem. Given:

- Resolution = 1280 x 1024 @ 60 Hz
 - How many pixels in one horizontal line?
- Pixel frequency = 108 MHz
- Horizontal Front Porch = 48 pixels, Back Porch = 248 pixels, Sync Pulse = 112 pixels

Find the time to scan one horizontal line

http://www.jimmellon.co.uk/vga-timing-diagram.html
30 second problem. Given:
- Resolution = 1280 x 1024 @ 60 Hz
 - How many pixels in one horizontal line?
- Pixel frequency = 108 MHz
- Horizontal Front Porch = 48 pixels, Back Porch = 248 pixels, Sync Pulse = 112 pixels

Find the time to scan one horizontal line

\[
\frac{48 + 112 + 248 + 1280}{108 \times 10^6 \text{ pixels} \times 1688 \text{ pixels/line}} \approx \frac{15.6 \mu s}{\text{line}}
\]
The Cable

- 5 protocol pins
- 5 ground pins
- 4 ID pins
- 1 key pin

https://goo.gl/images/AANogs
Our Implementation

Progress and Plans
Analog Voltage Outputs

- Vestigial from analog TV
 - Current LCDs use a ADC
- R/G/B: 0 - 0.7 Volts
- Hysnc/Vsync: 3.3 or 5.5 Volts
- RGB stored in 8 bits for alignment

https://www.youtube.com/watch?v=wzhDRIX2Ors&t=11s
Physical Interface With Monitor
VGA Settings

Monitor Identification and Image Storage
Hi, I’m Monitor A1 by manufacturer XYZ. I support these resolutions:
640x480, 800x600, ...

Hi, nice to meet you. I’m glad you support 800x600, here’s my video signal

Adapted from:
https://www.epiphan.com/blog/what-is-edid-and-why-is-it-important/
Display Data Channel (DDC)

- Displays can share supported displays modes
- Historically utilizes dedicated ID pins ID0-ID3
- Extended display identification data (EDID) stored in EEPROM
 - Describes capabilities of monitor and supported graphics modes
 - Stored as a 128 or 256 byte binary file
 - Former key pin provides 5V to power ROM even when monitor is off
- DDC2B - Most common form
 - Based on I2C serial communication
 - Uses ID1 as SDA and ID3 as SCL
 - Unidirectional, monitor slave always provides EDID at address 0x50
Extended Display Data Channel (E-DDC)

- Most modern form of the DDC standard
- Range of EDID storage extended up to 32 KiB
- 256 byte segments are selected by passing a 8-bit segment index to I2C address 0x30
 - Segment range is 0x00 - 0x7F
 - Read performed immediately after like normal DDC2B
 - Index auto-resets on NACK or STOP to provide backwards compatibility
Methods for Storing Image Data

- **Standard**: Maintain a frame buffer the size of the screen with 1 byte of RGB data per pixel

 Pros: Can be used for video or complex images
 Cons: Memory intensive

- **Memory-Efficient**: Store “sprites” of independent bitmap objects and their positions in the frame

 Pros: Uses less memory, possible without main CPU
 Cons: Only practical as a primary tool for simple bitmaps

HDMI

High Definition Multimedia Interface
HDMI Keeps Evolving

- Released in early 2000s and began seeing it in 2004-2005
- Today covers Version 1.0-1.2a
- Version 2.1 supports approximately 10x the bandwidth
 - 4k at greater than 30 Hz
 - 8k at 120 Hz with Display Stream Compression (DSC)
 - Deep color (twice as many bits/color)

HDMI Transmits Digital Data

- TMDS - Transition Minimized Differential Signaling
- Advanced encoding scheme
 - 10-bit transmission for every 8 bits
 - Edge minimizing
 - DC balance
- ~162 MHz
- 1 pixel/clock
- Extremely Reliable

Reliable

HDMI Pinout

http://articles.triplewidemedia.com/choosing-right-video-cable-hdmi/

Pinout Details

- **Blue**
 - 1: TMDS data 2+
 - 2: TMDS data 2 shield
 - 3: TMDS data 2-
 - 4: TMDS data 1+
 - 5: TMDS data 1 shield
 - 6: TMDS data 1-
 - 7: TMDS data 0+
 - 8: TMDS data 0 shield
 - 9: TMDS data 0-
 - 10: TMDS clock+

- **Green**
 - 11: TMDS clock shield
 - 12: TMDS clock-
 - 13: CEC
 - 14: No connected
 - 15: DDC clock
 - 16: DDC data
 - 17: Ground
 - 18: +5V power
 - 19: Hot plug detect

Clock

Display Data Channel
(for encryption key exchange)

Notify Device of Connection
HDMI Transmits More Than Video

- Audio is encoded in the RGB channels
- Display Data Channel
 - Resolution
 - Aspect ratio
 - Serial number
 - Encryption data

3 Big Takeaways
3 Big Takeaways

1. VGA was created for analog displays
2. Even for simple protocols, memory and latency requirements necessitate unconventional approaches
3. HDMI can encode audio and continues to increase bandwidth capabilities to support higher quality displays
Where To Learn More

VGA:
https://www.youtube.com/watch?v=wzhDRIX2Ors

HMDI Overview:

HDMI More in Depth:

HDMI Eye-pattern, cable, and speed:
Any Questions?

Takeaways:

1. VGA was created for analog displays
2. Even for simple protocols, memory and latency requirements necessitate unconventional approaches
3. HDMI can encode audio and continues to increase bandwidth capabilities to support higher quality displays
Any Questions?
Bonus: Coding The Verilog

1. Use a counter that increments every pixel to generate the horizontal sync signal
2. Use a counter that increments every line to generate vertical sync signal
3. Drive R, G, and B low if in the front porch or sync pulse
4. Drive R, G, and B to appropriate levels if in the visible region
 a. Helper function that considers the current location to find the pixel color
 b. Image stored in memory

http://www.eecg.toronto.edu/~tm4/rgbout.html
Control data encoding

<table>
<thead>
<tr>
<th>Input control bit</th>
<th>Output codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_0) (C_1)</td>
<td>(0 \ldots 9)</td>
</tr>
<tr>
<td>0 0</td>
<td>0010101011</td>
</tr>
<tr>
<td>0 1</td>
<td>0010101010</td>
</tr>
<tr>
<td>1 0</td>
<td>1101010100</td>
</tr>
<tr>
<td>1 1</td>
<td>1101010101</td>
</tr>
</tbody>
</table>

On Channel 0 the \(C_0 \) and \(C_1 \) bits encode the HSync and VSync signals. On the other channels they encode the CTL0 through CTL3 signals which are unused by DVI but in the case of HDMI are used as a preamble indicating the type of data about to be transferred (Video Data or Data Island), the HDCP status and so on.
HDMI Fun Fact

HDMI is not free

- $10,000 fee
- $0.04-0.15 per-unit royalty

Color Mixing

https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcR7tOO7iLTDaJssTkBcls4JdH6_FmQpydjM7zTJ7iTGum0fH2
Clearly better explanation about DAC and ADC

http://www.xess.com/blog/a-simple-vga-interface-for-the-xula-fpga-board/