Outline

• Solenoids
• Motors
 • DC
 • Stepper
 • Servo
 • Linear
• H bridges
• Shaft encoders
Solenoids

- Why?
 - Release kibble.
 - Ring bells.
 - Kick ball.
 - Open binary valve.
- Electromagnet-based actuator.
- Typically linear.
- Typically binary.
- Typically very fast.
- Poor controllability.
- Heat dissipation is major concern.
 - Only when on.
- Major E and EM noise source!
Outline

• Solenoids
• Motors
 • DC
 • Stepper
 • Servo
 • Linear
• H bridges
• Shaft encoders
DC motors

- General purpose: turn things.
- Must switch magnetic field polarity during turn.
 - Brushed: carbon common, wears out.
 - Brushless: solid-state DC → AC converter first.
- Back-EMF
 - Motors are also generators.
 - When turning, opposes applied voltage.
 - Speed-dependent: bigger when moving.
 - Noise source.
- Permits current regulation.
Drone/disc motors

Big advanced for UAVs/drones.
• Wide instead of long. Better heat dissipation.
• High-efficiency.
• High-torque.
• Require special drivers.
• Require sensors.
Outline

- Solenoids
- Motors
 - DC
 - Stepper
 - Servo
 - Linear
- H bridges
- Shaft encoders
Stepper motors

- Position at precise orientation.
- Toothed magnets.
 - Moves in small increments.
- High torque when stationary.
- Torque drops a lot at high speed.
- Works w.o. sensors / back EMF based control.
 - Don't use open-loop anywhere near limits.
- Reliable.
- Lock-in requires continued power.
- Use for precise orientation control.
Outline

- Solenoids
- Motors
 - DC
 - Stepper
 - Servo
 - Linear
- H bridges
- Shaft encoders
Servo motors

• Position at very precise (continuous) orientation.
• Requires sensors for closed-loop control system.
• Zero power once at rest.
• Expensive.
Outline

- Solenoids
- Motors
 - DC
 - Stepper
 - Servo
 - **Linear**
- H bridges
- Shaft encoders
Linear motors/actuators

- Increasing force, but with reduced speed.
- Moving objects along long paths.
- Unwind stator → linear array of electromagnets can be used.
- Leadscrews and rotary motors are more common.
Outline

• Solenoids
• Motors
 • DC
 • Stepper
 • Servo
 • Linear
• H bridges
• Shaft encoders
H bridges

- Why? Control direction of current through device.
- How? BJTs or FETs on “H” legs.
H bridge diodes

- What can go wrong?
 - Switch suddenly.
 - Inductors buck change in current.
 - Stored energy in coil produces large reverse voltage until discharged.
 - If FETs are off (they are), can be destroyed.
H bridge diodes

- Use diode in || with each switch.
- May be free w. MOSFETs.
- Where does current go when FET off?
Outline

• Solenoids
• Motors
 • DC
 • Stepper
 • Servo
 • Linear
• H bridges
• Shaft encoders
Shaft encoders

• Why? Know relative or absolute orientation.
• Linear arrangement of binary numbers.
• Can reuse numbers.
 • Lose absolute position.
• Adjacency essential.
 • Race conditions.
Shaft encoders

• How to design?
 • Adjacency map cycle.
 • 000 → 001 → 011 →
 • 010 → 110 → 111 →
 • 101 → 100 →
 • 0 → 1 → 0 → 1 fine, too.

• How to read?
 • LED+photodetector.
 • Reflective or transmissive.
Summary: you don't know motors

- You do know enough to get started.
- Have some understanding of uses.
- Strengths and weaknesses.
Done.