EECS 373
Introduction to Embedded System Design

Robert Dick
University of Michigan

Lecture 5: ABI, APB, and Build Process

30 Jan and 1 Feb 2024
Review based on questions in office hours / lab

- Bit-level manipulation
- Function calls and argument passing
Outline

- Application Binary Interface
- Advanced Peripheral Bus
- Deferred Details on Build Process
ABI summary

Detailed version
- Pass: r0-r3
- Return: r0 or r0-r1
- Callee saved variables: r4-r8, r11, maybe r9, r10
- Static base: r9 (might offset from this to write)
- Stack limit checking: r10 (SP >= r10)
- Veneers, scratch: r12 (lillypad)
- Stack pointer: r13
- Link register (function call return address): r14
- Program counter: r15

Simple version
- Callee preserves r4-r11 and r13
- Caller preserves r0-r3
ABI example

- main() calls f().
- f() calls g().
- g() calls h().

- What if f() clobbers r2?
- f() clobbers r5?
- g() clobbers r0?
- g() clobbers r4?
- h() clobbers r1?
- h() clobbers r6?
Outline

• Application Binary Interface
• Advanced Peripheral Bus
• Build Process
APB is designed for ease of use

• Low-cost.
• Low-power.
• Low-complexity.
• Low-bandwidth.
• Non-pipelined.
• Ideal for peripherals.
APB bus signals

- PCLK
 - Clock.
- PADDR
 - Address on bus.
- PWRITE
 - 1=Write, 0=Read.
- PWDATA
 - Data from processor.
- PRDATA
 - Data to processor.
APB bus signals

- **PSEL**
 - Asserted if the current bus transaction is targeted to *this* device.

- **PENABLE**
 - High during entire transaction *other than* the first cycle. Distinguishes between idle, setup, and ready.

- **PREADY**
 - Driven by target. Similar to #ACK. Means target is *ready*.
 - Each target has its own PREADY line.
Sharing

- Unshared.
 - PSEL.
 - PREADY.
 - PRDATA.
 - PSLVERR.

- Shared: everything else
 - PCLK.
 - PADDR.
 - PWRITE.
 - PENABLE.
 - PWDATA.
What is happening?
Example setup

- Assume one initiator “CPU” and two target finite state machines (D1 and D2)
- D1 is mapped to address 0x00001000-0x0000100F
- D2 is mapped to 0x00001010-0x0000101F
CPU stores to 0x00001004 w.o. stalls
Design a device which writes to a register whenever any address in its range is written.

- PWDATA[31:0]
- PWRITE
- PENABLE
- PSEL
- PADDR[7:0]
- PCLK
- PREADY

Assuming APB only gets lowest 8 bits of address

LSB of register controls LED
Reg A should be written at address 0x00001000
Reg B should be written at address 0x00001004

Assuming APB only gets lowest 8 bits of address
Each follower device has its own read data (PRDATA) bus.

Recall that “R” is from the initiator’s viewpoint—the device drives data when read.
Device provides data from switch for any of its addresses

PRDATA[31:0]
PWRITE
PENABLE
PSEL
PADDR[7:0]
PCLK
PREADY
Switch A for 0x00001000, B for 0x00001004

PRDATA[31:0]
PWRITE
PENABLE
PSEL
PADDR[7:0]
PCLK
PREADY

Switch A
Switch B
All reads read from register, all writes write

- PWDATA[31:0]
- PWRITE
- PENABLE
- PSEL
- PADRR[7:0]
- PCLK
- PREADY
- PRDATA[31:0]

32-bit Reg
D[31:0]
EN Q[31:0]

Assuming APB only gets lowest 8 bits of address
Errors and stalling

• PSLVERR high on error.
 • Otherwise, ground it.
• Use PREADY to stall.
 • > a few cycles probably implies design flaw.
A write transfer with wait states

Setup phase begins with this rising edge
A read transfer with wait states

Setup phase begins with this rising edge
Writes to 0x00000002 go to fast local servo, writes to 0x00000004 go to slow remote servo

Assuming APB only gets lowest 8 bits of address
Timing diagram for 0x00000004 write

```
<table>
<thead>
<tr>
<th>Time</th>
<th>PCLK</th>
<th>PADDR</th>
<th>PWRITE</th>
<th>PSEL</th>
<th>PENABLE</th>
<th>PWDATA</th>
<th>PREADY</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Additional capabilities

- There is another signal, PSLVERR which we can drive high on failure.
- Tie that to 0 if failure impossible.
- Assuming that our device never stalls.
 - We **could** stall if we needed.
 - PREADY.
Verilog

```verilog
/**/ APB3 BUS INTERFACE **/
input PCLK,      // clock
input PRESERN,   // system reset
input PSEL,      // peripheral select
input PENABLE,   // distinguishes access phase
output wire PREADY, // peripheral ready signal
output wire PSLVERR, // error signal
input PWRITE,    // distinguishes read and write cycles
input [31:0] PADDR, // I/O address
input wire [31:0] PWDATA, // data from processor to I/O device (32 bits)
output reg [31:0] PRDATA, // data to processor from I/O device (32-bits)

/**/ I/O PORTS DECLARATION **/
output reg LEDOUT, // port to LED
input SW // port to switch
);

assign PSLVERR = 0;
assign PREADY = 1;
```
APB state machine

- **IDLE**
 - Default APB state
- **SETUP**
 - When transfer required
 - PSELx is asserted
 - Only one cycle
- **ACCESS**
 - PENABLE is asserted
 - Addr, write, select, and write data remain stable
 - Stay if PREADY = L
 - Goto IDLE if PREADY = H and no more data
 - Goto SETUP is PREADY = H and more data pending
Outline

- Application Binary Interface
- Advanced Peripheral Bus
- Build Process
• What does a Makefile do?
• Linker scripts.
• Refresher on build process.
• Two paths to executable (C, assembly).
Stack-Call

- Detailed walk-through on stack allocation and deallocation.
- Double-word return.
Veneers

- Lillypad.
- PC contains current instruction + 8 bytes.
Weak references

- Allows you to conditionally call functions.
- May be useful in labs and projects.
- Understand linking better.

What does a weak symbol imply?
- Provides a default entry in a function vector.
- Why useful? Allows override at link time.

What does a call through a weak symbol imply?
- If the symbol exists, call function.
- If not, do nothing.
- Allows link-time conditional calls. No recompilation.
- Large projects w. libraries and multiple build versions.
Weak symbols

- Recall function pointers.
- Can define symbol that will be clobbered by later definitions of same symbol.
- Useful for interrupt vectors or custom, e.g., cleanup code.
Done.