
EECS 398 October 8, 2010
Intro to Computer Security Project 2: Web Security Pitfalls

Project 2: Web Security Pitfalls

This project is due on Thursday, October 28 at 5 p.m. and counts for 9% of your course grade. Late
submissions will be penalized by 10% plus an additional 10% every 12 hours until they’re received.
The professor may grant individual extensions, but only under truly extraordinary circumstances.
As always, we recommend that you begin early.

This is a group project; you will work in groups of two and submit one project per group. If you
wish, you may work with a different partner than you worked with for the previous project. We
recommend that you and your partner work through the simple attacks together to make sure that
you both understand the site infrastructure and the attacks. You will not get the intended benefits
from the project if you divide it up and work separately.

The code your group submits must be entirely your own work. You are free to discuss the project
with other members of the class, but you may not look at any part of someone else’s solution.
You may consult published resources, provided that you appropriately cite them (with program
comments), as you would in an academic paper.

We will answer questions about the project in the Friday discussion section and the CTools forum.
As per the collaboration policy, do not post any code from your project to the forum. Please check
the forum regularly for updates and clarifications.

Update 10/21: Fixed minor typos and Python version

1 Introduction
In this project, we provide an insecure website, and your job is to attack it by exploiting three
common classes of vulnerabilities: cross-site scripting (XSS), cross-site request forgery (CSRF),
and SQL injection. You are also asked to exploit these problems with various flawed defenses in
place. Understanding how these attacks work will help you better defend your own web applications.

Objectives:
• Learn to spot common vulnerabilities in websites and to avoid them in your own projects.

• Understand the risks these problems pose and the weaknesses of naïve defenses.

• Gain experience with web architecture and with HTML, JavaScript, and SQL programming.

2 Target Website
A startup called BUNGLE! is about to launch its first product—a web search engine—but their
investors are nervous about security problems. Unlike the Bunglers who developed the site, you
took EECS 398, so the investors have hired you to perform a security evaluation before it goes live.

The site is written using the Python-based Django1 web framework. Although Django has built-in
mechanisms that help guard against many common vulnerabilities, the Bunglers have circumvented
or ignored these mechanisms in several places.

In addition to providing search results, the site accepts logins and tracks users’ search histories.
It stores usernames, passwords, and search history in a SQLite2 database. Every page includes a
sidebar div that displays either the login form, or, if a user has logged in, the user’s search history.

Before being granted access to the source code, you reverse engineered the site and determined that
it replies to three main URLs: /, /search, and /login. [The function of these URLs is explained
below, but if you want an additional challenge, you can skip the rest of this section and do the
reverse engineering yourself.]

Main page (/) The main page simply displays a search form. When submitted, the form issues a
GET request for the /search page, sending the search string as the query parameter “q”.

Search results (/search) The search page prints the search string (supplied in the “q” query
parameter) to tell users what they searched for and then displays search results. [Because
actual search is not relevant to this project, the search results section is always empty.]

Login handler (/login) The login handler returns an HTML snippet containing new content for
the login/search history sidebar. It is not intended to be directly viewed as a standalone page.
The login handler accepts up to four arguments via POST:

user – The name of the user.

password – The user’s password in plaintext. [The password is neither sent nor stored
securely, but none of the attacks you implement should depend on this behavior. Never
use an important password to test an insecure site!]

login_action – One of “login”, “register”, or “reset”. The register action inserts
user and password into the database of users, unless a user with that username already
exists. The login action attempts to log in with the provided username and password.
The reset action attempts to reset the password for the given user using the provided
answer to the secret question, “What is your favorite college football team?”

secretanswer – The answer to the secret question if the reset action is being used.

Whether or not a user is logged in is tracked by a login cookie. Determining the format of this
cookie is left as an exercise to the reader. [The cookie is definitely not secure, but manipulating or
forging it is not part of this project. Treat it as an opaque string that attackers want to steal.]

1http://www.djangoproject.com/
2http://www.sqlite.org/

2

http://www.djangoproject.com/
http://www.sqlite.org/

3 Tasks and Deliverables
Based on your preliminary analysis, you know the site is vulnerable to a variety of common web
attacks. In order to make sure BUNGLE! fixes the problems, you need to demonstrate the kind of
damage that an attacker could do. The Bunglers have been experimenting with some naïve defenses,
so you also need to demonstrate that these provide insufficient protection.

3.1 READ THIS FIRST
This project asks you to develop attacks and test them against your own private instance of the target
site. Attempting the same kinds of attacks against other websites without authorization may result
in fines, expulsion, and jail time. You must not attack any website without authorization! This
includes attempting to interfere with another student’s instance of the target site. If you have any
questions about this policy, especially as it applies to this project, contact the course staff before
proceeding. Per the course ethics policy, you must respect the privacy and property rights of others
at all times, or else you will fail the course. See the “Ethics, Law, and University Policies” section
on the course website at http://www.eecs.umich.edu/courses/eecs398/ for further information.

3.2 SQL Injection
Your first goal is to demonstrate SQL injection attacks that log you in as a specific user (without
knowing the password) and allow you to view the user’s search history. Specifically, for each of the
following defenses, create a web page with the specified filename that, when viewed in the browser,
logs you in as the user “jhalderm”:

0. No defenses.
[sql0-nodefense.html]

1. Extra credit: The server escapes single quotes (’) in the input by replacing them with two
single quotes.
[sql1-escape.html]

Guidelines and Hints
The defense is selected by the “sqlfilter” parameter (sent via POST) to /login. The default is 0,
the lowest setting. Each page you submit must set this parameter to the defense it is targeting. To
make it easier to manually test the site easier, the developers have included a dropdown box in the
login sidebar that controls this parameter.

To see the SQL query you are attacking, look in server/search398/simplesearch/views.py.

Be sure that your attacks are logging you in as the correct user, and that you remain logged in after
refreshing the page. Make sure they work even if the victim user is neither the most nor the least
recently created user!

The SQL injection defense does not properly handle passwords that would be modified by the filter.
Avoid setting passwords containing single quotes while working on this part.

3

http://www.eecs.umich.edu/courses/eecs398/

3.3 Cross-site Request Forgery (CSRF)
Your next goal is to demonstrate CSRF attacks that surreptitiously cause the victim to log in to an
account you control, thus allowing you to monitor the victim’s search queries by viewing the search
history for this account. Specifically, for each of the following defenses, create a web page with the
specified filename that, when viewed by a victim, causes the victim to be logged in to the account
“honey” with the password “l33th4x”: [Be sure to create this account when you are testing!]

0. No defenses.
[csrf0-nodefense.html]

1. Simple validation token: The server maintains a global counter that is incremented and placed
in a hidden field in the login form called “csrfcounter”; the login attempt is accepted if the
submitted counter value is in the interval [currentcounter−10,currentcounter).
Apparently, the site developer expected light, constant traffic to the site, so you may expect
this as well; you may not assume that the counter starts at 1. You are allowed to exploit the
cross-site scripting vulnerability in the /search page to accomplish your goal.
[csrf1-token.html]

For the following defense, create a web page with the specified filename that, when viewed by a
victim, will cause the victim to be logged out of the target site if the victim is logged in:

2. Referer validation: The server rejects login requests if the HTTP Referer header is for a
site other than the server’s. However, the server accepts requests that have no Referer at all.
The provided implementation of Referer validation requires the server to be hosted on port
8000 and accessed directly at http:/ /127.0.0.1:8000 . If your setup is different, edit the Referer
string in _validate_referer in the file views.py.
[csrf2-referer.html]

Guidelines and Hints
The web pages you submit must be self-contained (i.e., HTML files only), but they may contain
embedded CSS and JavaScript. Don’t use unnecessary JavaScript when simple HTML would do.

Your solutions should not display evidence of an attack (e.g., pages from the target site). Instead,
the page should be blank. It is OK if the page is briefly not blank before correcting itself.

The defense is selected by the “csrfdefense” query parameter to all the URLs (sent via GET,
not POST). The default is 0, the lowest setting. You may not attempt to subvert the mechanism
for changing the level of defense in your attacks; all requests for a particular defense n must set
csrfdefense to n.

For your convenience, the developers have included a dropdown in the sidebar that you can use
to change the CSRF defense manually. If you use it, be sure to click the “Change CSRF Defense”
button in the login sidebar to update the sidebar before logging in.

4

http://127.0.0.1:8000

3.4 Cross-site Scripting (XSS)
Your final goal is to demonstrate XSS attacks against the search box, which does not properly filter
search terms before echoing them to the results page.

Payload The payload (the code that the attack tries to execute) will be an extended password theft.
If the victim is already logged in, the payload should steal the victim’s login cookie, log the victim
out, and continue the attack. If and when the victim is not logged in, the payload should do the
following when the victim attempts to log in:

a. Steal the victim’s username and password.
b. Modify the username and password that will be submitted to force a login failure.
c. Continue to attack after the failed login attempt (i.e., repeat (a) and (b) as long as the user

stays on the page and keeps trying to log in).

If the victim gives up and tries to reset the password, the payload should steal the victim’s answer to
the secret question.

Defenses There are six levels of defense, starting with 0, which has no defenses, and ending in 5,
which is the Django 1.0 XSS filter. Previously unknown attacks against the Django 1.0 XSS filter
will result in extra credit. The code for the XSS filters is in server/search398/simplesearch
templatetags/xss_filters.py. In each case, you should submit the simplest attack you can
find that works against that defense; you must not simply attack the highest level and submit your
solution for that level for every level. You must also use a different technique for each defense.

We may release additional levels of defense during the project as optional extra credit challenges.
If we do, they will be announced on CTools. There is a hook in the provided code to support
this (see search398/simplesearch/templatetags/xss_filters.py), so you will not need to
download a new version of the server.

Guidelines and Hints As with the previous attacks, the server supports a “xssdefense” query
parameter to /search to select the defense in use. The developers have again included a dropdown
menu that you can use to select the XSS defense manually. Unlike the CSRF attack, you do not
need to click a separate button to change the difficulty of the XSS attack; simply set the difficulty
before clicking search.

Your submission for each level of defense will be a URL that, when clicked by the victim, executes
the payload. The URL will be for the /search page in all cases, and you should simply omit the
domain and start the URL with “/search”. The URL must include the appropriate difficulty
query parameter as the first query parameter. For each level of defense n, put your URL in a text file
entitled “xssn.txt”. The payload should be the same in all cases; attach a readable version of the
payload in an additional file called “xss-payload.js”. Note that your URLs may not depend on
the existence of this file.

To steal a piece of data, send it to http://127.0.0.1:31337/stolen using a GET request and query
parameters. Use the parameter “user” to send the stolen username, “password” to send the stolen
password, “secretanswer” to send the answer to the secret question, “cookie” to send the stolen
cookie, etc. Be careful not to send any actual sensitive information (e.g., your code) to this URL.

5

http://127.0.0.1:31337/stolen

3.5 Writeup: Better Defenses
For each of the three attacks (SQL injection, CSRF, and XSS), write a paragraph about the tech-
niques BUNGLE! should use to defend against that attack. Place these paragraphs in a file entitled
“writeup.txt”. If you find any additional security vulnerabilities in the site or have suggestions
about how we might improve this project in the future, include them as well.

4 Mechanics
We have provided code for the target website, which is implemented in Python using the Django
Web framework. You do not need to understand this code in order to complete the project, although
you are free to look at it. We have left debugging messages turned on in the Django settings in case
you run into trouble with the provided code.

4.1 Installing and running the server
Prerequisites You will need to install Django 1.0 to run the provided server. You can install it in

the CAEN environment with the following command sequence:
$ mkdir ~/packages
$ cd ~/packages
$ wget http://www.djangoproject.com/download/1.0.4/tarball/
$ tar zxf Django-1.0.4.tar.gz
$ cd Django-1.0.4
$ python2.5 setup.py install –-home $HOME

Server Setup Download the project code distribution from the course website and extract it. Then:
1. Set the Python library path:

Run setenv PYTHONPATH $HOME/lib/python if you use the CAEN default C shell
(your prompt will be “% ”); or run export PYTHONPATH=$HOME/lib/python if you
use the bash shell (recommended; your prompt will be “$ ”).

2. Edit settings.py to configure the path where you have extracted the server.
3. Create the database by changing to the directory where you extracted the server and

running: python2.5 manage.py syncdb. The database is created in a file in your
home directory called 398p2.db. You only need to perform this step once, unless you
delete the database.

Running Whenever you want to start the target server, run: python2.5 manage.py runserver
The server should print its URL. If you get an error about the port already being in use, you
can specify a port after “runserver”. To quit the server, just press control-C.

Connecting This project will be graded under Mozilla Firefox 3.6.9, which is available under
CAEN Linux. If you are trying to work on the project remotely, make sure that you run
Firefox inside the CAEN Linux VNC session. You can also use SSH port forwarding so that
you can run Firefox locally, but explaining how to do so is outside the scope of this document.

6

4.2 General Guidelines and Resources
In all parts, you should implement the simplest attack you can think of that defeats the given set of
defenses. In other words, do not simply attack the highest level of defense and submit that attack as
your solution for all defenses. Also, you do not need to try to combine the vulnerabilities.

We strongly recommend that you do not try to develop this project targeting a browser other than the
Firefox 3.6 series. Cross-browser compatibility is one of the major headaches of web development.
Furthermore, recent versions of Google Chrome and Internet Explorer include defenses against
cross-site scripting that will interfere with your testing.

The Firebug JavaScript debugger (http://getfirebug.com/) will be a tremendous help for this project.

JavaScript is a relatively complicated programming language and has many confusing parts. In
this project, focus on producing simple code that does what you need it to do without getting
bogged down in JavaScript esoterica. For a JavaScript/DOM API reference, you might try http://
www.w3schools.com/jsref/default.asp or JavaScript: The Definitive Guide, 5th Edition, by David
Flanagan (2006). For a gentler introduction to the language, see: http://en.wikibooks.org/wiki/
JavaScript/.

We encourage you to read the ha.ckers.org Cross-Site Scripting Cheat Sheet, available at http://
ha.ckers.org/xss.html. It is an amazingly comprehensive directory of ways to bypass partial XSS
filters. For SQL injection, you might start by consulting http://bobby-tables.com as well as http://
ha.ckers.org/sqlinjection. In addition, there is searchable documentation for Django at http://
docs.djangoproject.com/en/dev/ to help you decipher the provided code.

4.3 Submitting
This project is due Thursday, October 28 at 5 p.m. For submission, place your files in a directory
named “proj2” and archive it as “proj2.member1uniqname.member2uniqname.tar.gz”. (To
help us process submissions easily, please put your uniqnames in alphabetical order). Attach the
archive file to an email to eecs398@umich.edu with “Proj2 Submission” as the subject. You
should receive a confirmation email within 15 minutes.

7

http://getfirebug.com/
http://www.w3schools.com/jsref/default.asp
http://www.w3schools.com/jsref/default.asp
http://en.wikibooks.org/wiki/JavaScript/
http://en.wikibooks.org/wiki/JavaScript/
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://bobby-tables.com
http://ha.ckers.org/sqlinjection
http://ha.ckers.org/sqlinjection
http://docs.djangoproject.com/en/dev/
http://docs.djangoproject.com/en/dev/

