
University of Michigan

EECS 442: Computer Vision

Fall 2023. Instructor: Andrew Owens.

Problem Set 1: Image filtering

Posted: Monday, August 28, 2023 Due: Wednesday, September 13, 2023

For Problem 1.1, please submit your written solution to Gradescope as a .pdf file.
For Problem 1.2, please submit your solution to Canvas as a notebook file (.ipynb), containing
the visualizations that we requested. Please also follow our instructions to convert the your
Colab notebook to a PDF file and submit the PDF file to Gradescope. For your convenience,
we have included the PDF conversion script at the end of the notebook.

The starter code can be found at:
https://colab.research.google.com/drive/1hsE0fNNvYPbjAmkId5IVi2gWOcmsx9oW?usp=sharing

We recommend editing and running your code in Google Colab, although you are welcome to
use your local machine instead.

Problem 1.0 numpy review (optional)

We will post a Colab notebook containing a brief introduction to numpy. If you are new to
numpy and numerical computing, we encourage you to work through these examples. They
should cover the background that you need to complete this problem set. The Colab notebook
can be found at:
https://colab.research.google.com/drive/1f7nAcXVy7jgvt21LhP_dHSmM-ARqUXCD?usp=sharing

Problem 1.1 Properties of convolution

Recall that 1D convolution between two signals f, g ∈ RN is defined:

(f ∗ g)[n] =
N−1∑
k=0

f [n− k]g[k]. (1)

(a) Construct a matrix multiplication that produces the same result as a 1D convolution with
a given filter. In other words, given a filter f , construct a matrix H such that f ∗ g = Hg for
any input g. Here Hg denotes matrix multiplication between the matrix H and vector g (2
points).

(b) In class, we showed that convolution with a 2D Gaussian filter can be performed efficiently
as a sequence of convolutions with 1D Gaussian filters. This idea also works with other kinds
of filters. We say that a 2D filter F ∈ RN×N is separable if F = uv⊤ for some u, v ∈ RN , i.e.

1

https://www.gradescope.com/courses/586289
https://umich.instructure.com/courses/632378
https://docs.google.com/document/d/1FvAuB-7NW6jZ8XzSQfkILOAQBdL7mGAXVln8a2ns2Gw/edit?usp=sharing
https://colab.research.google.com/drive/1hsE0fNNvYPbjAmkId5IVi2gWOcmsx9oW?usp=sharing
https://colab.research.google.com/drive/1f7nAcXVy7jgvt21LhP_dHSmM-ARqUXCD?usp=sharing


F is the outer product of u and v. Show that if F is separable, then the 2D convolution G ∗F
can be computed as a sequence of two one-dimensional convolutions (2 points).

(c) (optional) Show that convolution is commutative, i.e. f ∗ g = g ∗ f . You may assume
circular padding (e.g., f [−1] = f [N − 1]), zero padding, or whatever is convenient. Note: we
will not grade this problem, and you will not get bonus points for completing it.

Hint: Write the equation for f ∗ g, and figure out how to “rename” the variable used in the
summation to arrive at g ∗ f .

(d) (optional) Show that convolution is associative, i.e. (f ∗ g) ∗ h = f ∗ (g ∗ h).

Note: One option is to define H in “bracket” notation using “...” symbols, e.g., H =[
0 1 ... N − 1

N − 1 N − 2 ... 1

]
. Another option is to explicitly define the entries Hij .

Hint: Start by writing down the expression for G ∗ F and then, inside the double summation,
write F in terms of u and v.

(e) (optional) Show that cross-correlation,

h[n] =
N−1∑
k=0

f [n+ k]g[k], (2)

is not commutative.

Problem 1.2 Sponsored problem: pet edge detection

Figure 1: The Petco /
EECS 442 partnership, illus-
trated with DALL-E 2.

As you know, this course is largely funded by grants from Petco,
Inc.™ Unfortunately, one of the strings attached to this funding
is that we must occasionally assign sponsored problems that cover
topics with significant business implications for our sponsor1.
Our partners at Petco see an opportunity to use computer
vision to pull ahead of their bitter rivals, Petsmart™. Instead
of painstakingly marking the edges of dogs and cats in pictures
by hand—the current industry practice—they have turned to
us for an automated solution.

(a) Using the starter code provided, apply the horizontal and
vertical gradient filters [1 -1] and [1 − 1]⊤ to the picture of
the provided pet2 producing filter responses Ix and Iy. Write a
function convolve(im, h) that takes a grayscale image and a
2D filter as input, and returns the result after convolution. Please do not use any “black-box”
filtering functions for this, such as the ones in scipy3. You may use numpy.dot, but it is not

1We are thankful for this sponsorship, though. Recall that in previous semesters, the whole class shared a
single GPU, which the course staff shuttled between students’ homes in a rented van.

2These convolution filters are 1× 2 and 2× 1 matrices respectively. Even though they are not square, your
convolution function should have no problem using them.

3Our sponsor has been prohibited from from using these functions as part of the terms of an lawsuit that,
best we can tell, involves a dog bite and a key member of the scipy development team.

2



(a) An input image (b) “Fluffy coat” failure case

Figure 3: (a) A pet photo helpfully delivered by our sponsor, (b) a failure case for a simple edge
detector. These images are provided in the starter code. Photo credits can be found here.

necessary. Instead, implement the convolution as a series of nested for loops. Compute the
edge strength as I2x + I2y . After that, create visualizations of Ix, Iy, and the edge strength,
following the sample code.

The filter response that your function returns should be the same dimensions as the input
image. Please use zero padding, i.e. assume that out-of-bounds pixels in the image are zero.
Also please make sure to implement convolution, not cross-correlation. Note that this simple
filtering method will have a fairly high error rate — there will be true object boundaries it
misses and spurious edges that it erroneously detects. The team at Petco, thankfully, has
volunteered to painstakingly fix any errors by hand (3 points).

Figure 2: A meeting between the
provost and a Petco representative,
made using DALL-E 2.

(b) (Optional) This method detects edges fairly well on
one of the dogs, but not the other. Our sponsor would like
us to investigate why this is happening. First, convert your
gradient outputs to edge detections using a hand-chosen
threshold τ (i.e. set values at most τ to 0 and those above
to 1). Point out 2 errors in the resulting edge map — that
is, edge detections that do not correspond to the boundary
of an object — and explain what causes these errors.

(c) While the edge detector you submitted works well on
some pets, engineers are reporting a large number of failures,
and Petco higher ups are not happy. Rumor is that it’s
failing on pets that are playing in grass, especially for dogs
with fluffy coats, such as “doodle” mixes — a particularly
lucrative market for our sponsor (Figure 3b). It appears
that the gradient filter is firing on small, spurious edges.

Kindly address our funders’ problem by creating an edge detector that only responds to
edges at larger spatial scales. Do this by first blurring the image with a Gaussian filter,
before computing gradients. Implement your Gaussian filter on your own4. Please do not use
any “black-box” Gaussian filter function for this, such as scipy.ndimage.gaussian filter.

4Hint: Make sure that the kernel is properly centered.

3

https://web.eecs.umich.edu/~ahowens/eecs504/w20/psets/ps1/ims/sources.txt


Apply both the Gaussian filter and the gradient filter using a black-box convolution function
scipy.ndimage.convolve on the image, rather than your hand-crafted solution.

(i) Compute the edges without blurring, so we can look at the before-and-after results.

(ii) Compute the blurred image using σ = 2 and an 11× 11 Gaussian filter.

(iii) Instead of blurring the image with a Gaussian filter, use a box filter (i.e., set each of the
11× 11 filter values to 1/112).

(iv) Compute edges on the two blurred images.

(v) (Optional) Do you see artifacts in the box-filtered result? Describe how the two results
differ. Include your written response in the notebook.

Visualize the edges in the same manner as Problem 1.2(a). Your notebook should contain
edges that were computed using no blurring, Gaussian blurring, and box filtering. Please also
show the two blurred images (2 points).

Figure 4: A member of our dog-
based GPU delivery fleet, made us-
ing DALL-E 2.

(d) Instead of convolving the image with two filters to
compute Ix (i.e. a Gaussian blur followed by a gradient),
create a single filter Gx that yields the same response. You
can reuse the function in part (c). Visualize this filter using
the provided code (2 points).

(e) Good news. Petco execs are pleased with your work and
have renewed our funding for several more problem sets. At
our last grant meeting, however, they made an additional
request. Their competitors at Petsmart have hired a team
of computer vision researchers and are now computing
oriented edges of their pets: rather than just estimating just
the horizontal or the vertical gradients, they now provide
gradients for an arbitrary angle θ. Petsmart’s method for
doing this, however, is computationally expensive: they
construct a new filter for each angle, and filter the image
with it. Petco sees an opportunity to pull ahead of their rivals, using the class’s knowledge of
steerable filters.

Write a function oriented grad(Ix, Iy, θ) that returns the image gradient steered in the
direction θ, given the horizontal and vertical gradients Ix and Iy. Use this function to compute
your gradients on a blurred version of the input image at θ ∈ {1

4π,
1
2π,

3
4π}, using the same

Gaussian blur kernel as (c). Visualize these results in the same manner as the gradients in
Problem 1.2 (a) (2 points).

4

https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html

