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EECS 442: Computer Vision

Fall 2023. Instructor: Andrew Owens.

Problem Set 7: Representation Learning

Posted: Wednesday, Oct 25, 2023 Due: Wednesday, Nov 8, 2023

Please convert your Colab notebook to a PDF file and submit the PDF file to Gradescope.
We have included the PDF conversion script at the end of the notebook. Nothing needs to be
submitted to Canvas.

The starter code can be found at:
https://drive.google.com/file/d/19mBlXSX-KqsjtayczBFfSTZ11RifjlEq/view?usp=sharing

We recommend editing and running your code in Google Colab, although you are welcome to
use your local machine instead.

Problem 7.1 Autoencoders (5 pts)

We’ll start by implementing a simple self-supervised learning method: an autoencoder. The
autoencoder is composed of an encoder and a decoder so it has a funnel-like architecture. The
encoder often compresses the original data, i.e., it throws away redundant information by
reducing the layer sizes gradually. The final output size of the encoder is a bottleneck that is
much smaller than the size of the original data. The decoder will use this limited amount of
information to reconstruct the original data. If the reconstruction is successful, the encoder
has arguably captured a useful, concise representation of the original data.

Such representations could help with downstream tasks such as object recognition, semantic
segmentation, etc. Here, to test the usefulness of the representation, we’ll train the encoders
on the STL-10 dataset, which is designed to evaluate unsupervised learning algorithms. This
dataset contains 100,000 unlabeled images, 5,000 labeled training images, and 8,000 labeled test
images. To keep training time short, we’ll use 10,000 unlabeled images to learn representations.

We will then use the feature representation that we learned to train an object recognition model
(a simple linear classifier) on the 5,000 labeled training images. If the learned representations
are useful, we should obtain a performance improvement over only using the small, labeled
training set.

Here are the steps to follow:

1. Implement class Encoder (1 pt) and class Decoder (1 pt) based on the architecture
given in the notebook. The conv layers in the autoencoder (both encoder and decoder) all have
kernel size = 4x4, stride = 2, padding = 1. We will build a small convolutional autoencoder
using the encoder and decoder.
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Figure 1: Sample images from STL-10 dataset.

2. Implement def train ae (1 pt) and train the autoencoder on the STL-10 dataset by
running the code in notebook.

3. Implement def train classfier and set the supervised parameter in three methods
according to their descriptions (1 pt). With the trained autoencoder, we freeze the parameter
of the encoder and train a linear classifier on the autoencoder representations, i.e., the output
of the encoder. You will compare the accuracy of the linear classifier with two other linear
classifiers. One is trained together with the encoder and the other one is trained on top
of a randomly initialized encoder. Confirm that the unsupervised pretraining improves the
classification accuracy compared to the random baseline. Method I should achieve about 30%
accuracy on the test set. Method II should achieve above 40% accuracy. Method III performs
the worse among these three.

4. Report results in the Report results section at the end of the notebook (1 pt)

Problem 7.2 Associating Images with Language (5 pts)

We will implement a simplified version of a recent representation learning method, Contrastive
Language-Image Pre-training (CLIP) [1, 2] that learns to associate images with text provided
by humans1.

We will learn a vector embedding for images using contrastive learning: in this representation,

1We covered contrastive learning in the representation learning and language lectures.
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Figure 2: We learn a joint embedding between images and their corresponding text using a contrastive
loss. Figure source: Radford et al. [1].

the input image and it corresponding caption should have a large dot product, while dot
products between an image and other unrelated captions should be small. We first extract the
feature embeddings for the image and its respective caption using a ImageEncoder (ResNet50[3])
and a TextEncoder (DistilBert [4]) respectively. Next, we project both these embeddings into a
common vector space for matching as illustrated in part Figure 2. Finally, we will use InfoNCE
loss [5] to train the contrastive model:

LI,T
contrast = − 1

N

N∑
i=1

log
exp(Ii · Ti/τ)∑N
j=1 exp(Ii · Tj/τ)

, (1)

where Ii and Ti are the image and text embeddings for the ith sample in a minibatch, and N
denotes the batch size. The constant τ is used to control the range of logits. The denominator
sums over all of the other text embeddings in the batch.

We will minimize a symmetric objective function:

L =
LI,T
contrast + LT,I

contrast

2
. (2)

where the second term is defined:

LT,I
contrast = − 1

N

N∑
i=1

log
exp(Ti · Ii/τ)∑N
j=1 exp(Ti · Ij/τ)

. (3)

Conceptually, LT,I
contrast matches the text to the image (rather than the image-to-text, as in

LI,T
contrast ). Its denominator sums over the image embeddings. By minimizing the above loss

function, we learn representations for the image and text such that the positive pairs (respective
images and their captions) will produce high dot product while giving low dot product for
negative samples (image and other unrelated captions).

We will complete the implementation as follows:
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Contrastive learning. We will implement a simplified version of the network and loss
function. In this simplified model, the language network backbone will be frozen2, and the
visual backbone will be pretrained using ImageNet.

Linear probing evaluation. We will again train a linear classifier for object recognition,
using the learned network. There should be a significant performance improvement compared
to the autoencoder representations3, e.g., 75% (or higher) now vs. 44% with autoencoder.

Text-to-image retrieval. Next, we will use our model for cross-modal retrieval. Given a
text query, e.g., “dogs in the park” we will find the k best-matching images. To do this, we
will find the images that have the highest dot products in our learned embedding space.

List of functions/classes to implement:

1. class ProjectionHead (1 pt)

2. class CLIPModel (2 pts)

3. Report linear classifier accuracies at the end of the notebook (1 pt)

4. function retrieve images (1 pt)

Acknowledgements. The CLIP problem and code are built on top of Simple CLIP [2].
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2While the design of this network is outside of the scope of this class, you can learn more about it by reading
Sanh et al. [4].

3This performnace improvement may be due to a number of factors, including the larger network size, the
use of ImageNet pretraining, and the visual-language learning task.
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