
University of Michigan

EECS 442: Foundations of Computer Vision

Fall 2023. Instructor: Andrew Owens.

Problem Set 9: Neural Radiance Fields

Posted: Monday, Nov. 27, 2023 Due: Wednesday, Dec. 6, 2023

Please convert your Colab notebook to a PDF file and submit the PDF file to Gradescope,
making sure to label your answers. We have included the PDF conversion script at the end of
the notebook. Nothing needs to be submitted to Canvas. Credit: The code of this problem
set is largely taken from the original implementation of the Fourier Feature Networks paper
and the NeRF from Nothing tutorial.

The starter code can be found at:
https://drive.google.com/file/d/1VnwGKCKjX-Jo_8NFrl3asPrMNWBo1ZGG/view?usp=sharing

We recommend editing and running your code in Google Colab, although you are welcome to
use your local machine instead.

Problem 9.1 Fitting an MLP to a single image

As a starting point, we will train a multilayer perceptron (MLP) to reproduce a given input
image. The MLP will take, as input, the (x, y) coordinate of a pixel as input, and will directly
predict its corresponding (r, g, b) color.

We will study the effect of using a positional encoding to represent the input. Given a vector
x ∈ R2, the full positional encoding is: γ(x) = (sin(2πx), cos(2πx), · · · , sin(2nπx), cos(2nπx)),
where cos and sin are applied pointwise to their input (i.e., applied to each coordinate of the
vector independently). In our implementation, we will consider different values of n, thereby
controlling the number of frequencies that are used in the representation. We will control this
using a matrix B, such that

γ(x) =
(
cos

(
2πxB⊤

)
, sin

(
2πxB⊤

))
. (1)

By choosing different values for B, we can thereby control the number of frequencies that are
used by the model.

(a) (2 points) Implement the function input mapping(self, x, B) in 9.1.1 that applies a
Fourier feature mapping, specified by B, to the input x.

(b) (1 points) Define the base Fourier feature matrix B in 9.1.4 that encodes input vector
x into γ(x) = (sin(2πx), cos(2πx)). Your results should be similar to those in Fig. 1.

1

https://arxiv.org/abs/2006.10739
https://towardsdatascience.com/its-nerf-from-nothing-build-a-vanilla-nerf-with-pytorch-7846e4c45666
https://drive.google.com/file/d/1VnwGKCKjX-Jo_8NFrl3asPrMNWBo1ZGG/view?usp=sharing


Figure 1: Example prediction with base Fourier features.

(c) (1 points) Define the full Fourier features matrix B in 9.1.5 that encodes input x into
γ(x) = (sin(2πx), cos(2πx), · · · , sin(2nπx), cos(2nπx)). Your results should be similar to
those in Fig. 2.

Figure 2: Example prediction with full Fourier features.

Problem 9.2 Neural radiance fields

We will fit a neural radiance field (NeRF) to a collection of photos (with their camera pose),
and use it to render a scene from different (previously unseen) viewpoints. To estimate the
color of a pixel, we will estimate the 3D ray that exist the pixel. Then, we will walk in the
direction of the ray and query the network at each point. Finally, we will use volume rendering
to obtain the pixel’s RGB color, thereby accounting for occlusion.

Recall that the NeRF is similar to the MLP that you implemented in 9.1. It is an MLP FΘ

such that
FΘ(x, y, z, θ, ϕ) = (R,G,B, σ), (2)

where (x, y, z) is a 3D point in the scene, and (θ, ϕ) is a viewing direction. It returns a color
(R,G,B) and a (non-negative) density σ that indicates whether this point in space is occupied.

(a) (1 points) Implement the function positional encoder(x, L embed = 6) in 9.2.2 that
encodes the input x as γ(x) = (x, sin(20x), cos(20x), · · · , sin(2L embed−1x), cos(2L embed−1x)).
This will be similar to your implementation of 9.1.

2



(b) (3 points) Implement the code that samples 3D points along a ray in 9.2.5. This will
be used to march along the ray and query FΘ.

(c) (2 points) After having walked along the ray and queried FΘ at each point, we will
estimate the pixel’s color, represented as rgb map (in 9.2.5). We will also compute,
depth map, which indicates the depth of the nearest surface at this pixel.

We can now render the NeRF from different viewpoints. If everything implemented correctly,
your rendered results from camera pose #40 will be similar to Fig. 3.

Figure 3: Example prediction from the NeRF.

3


