# Lecture 1: Introduction EECS 442: Computer Vision



### Course staff



### Sarah Jabbour GSI



### Yiming Dou GSI

# Interacting with us

- In person office hours (we'll have one over Zoom)
- If you have questions during lecture, either raise your hand or post it as a Zoom message.
- Ask homework and class questions on Piazza
- Homework submission via Gradescope





### Course website



Note: Welcome to EECS 442. Unfortunately, 2 of the 5 optional discussion sections that were originally in the course calendar will not be offered, since they were listed in error (namely, the Friday 10:30am and Thursday 3:30pm sections). Please see here for the sections that are still offered. If this affects you, we apologize for the inconvenience. You are welcome to attend any of the 3 remaining sections, regardless of whether you are officially enrolled in them. Please note that discussion sections largely review course material that was covered during lecture, and thus attendance is completely optional. We will also record them, for those who are unable to attend. We apologize for any inconvenience that this caused, and hope that those who wanted to attend can still do so. Please note that the lecture will still take place at the usual time.

| Lecture | Date         | Торіс                                                                                          | Materials                                                                                                                                     | Assignments         |
|---------|--------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Lec. 1  | Mon, Aug. 28 | Introduction<br>About the course<br>Neighborhood filtering<br>Blurring<br>Gradient filters     | <ul> <li>Torralba et al. manuscript: Signal processing</li> <li>Reminder: recording can be found in the<br/>lecture capture system</li> </ul> | ps1 out (filtering) |
| Lec. 2  | Wed, Aug. 30 | <b>Filtering</b><br>Convolution and cross-correlation<br>Edge detection<br>Nonlinear filtering | <ul> <li>Torralba et al.: Signal processing</li> <li>Szeliski Chapter 3.2, page 111</li> </ul>                                                |                     |
| Sec. 1  | Fri, Sep. 1  | Linear algebra and filtering                                                                   | Colab Notebook                                                                                                                                |                     |
|         | Mon, Sep. 4  | No class - Labor Day                                                                           |                                                                                                                                               |                     |
|         |              |                                                                                                |                                                                                                                                               |                     |

https://www.eecs.umich.edu/courses/eecs442-ahowens/fa23/

| : Cc | ompute | r Vision   |      |            |
|------|--------|------------|------|------------|
| wens |        | Fall 2023  |      |            |
| za   | Canvas | Gradescope | Zoom | Recordings |

#### Schedule

### Temporary mirror: https://www.andrewowens.com/eecs442-fa23-mirror/

### Assignments (70%) • Final project (30%)

No exams

# Grading

# Assignments

- $\bullet$  Weekly problem sets (  $\thickapprox9$  ) with equal weight
- Due each Wednesday at midnight
  - PS1 out at midnight tonight, due on 9/13.
- You'll have **5 late days** 
  - Once they're used up, 30% penalty per day
- Assignments be done independently.
  - Encouraged to discuss the problems
  - Programming/writing should all be yours

## Project

- Some options:
  - Choose from a list of project topics.
  - Implement a recent paper
  - Your own idea (recommended)
- Small groups: 1-4 people suggested.
- Deliverables:
  - 1. Project proposal (early November)
  - 2. Short presentation (beginning of finals period)
  - 3. Writeup (middle of finals period)

- Linear algebra + calculus (required)
- Math review during the next two sections.
- Python programming with numerical libraries like numpy

## Suggested background

### Discussion sections

- Important: unfortunately, two sections are cancelled.
  - Canceled sections: Thu. 3:30pm, Fri. 10:30am
- You can attend any section, and attendance is optional. We'll record it, too.
- What's covered? Mostly review material from lecture, programming tutorials, project help.





# Readings



#### http://szeliski.org/Book We'll use 2nd edition

### Other useful references:



http://deeplearningbook.org



and Freeman

# GPU computing

- Later problem sets (PS5 and onwards) use GPUs.
- GPUs are very expensive.
- Recommend using Google Colab
  - Free, but comes with usage limits (per email address)
  - Please send the course staff a message.
- CAEN has machines you can use in their computer labs

• You can consider purchasing Colab Pro, but it's not necessary. If you are unable to afford it and would like to use it, we have been provided with a small amount of funding from the CSE DEI office.

Class topics

| Lec. 1 | <b>A simple vision system</b><br>About the course<br>Cameras<br>Simple edge detection                |
|--------|------------------------------------------------------------------------------------------------------|
| Lec. 2 | <b>Image filters</b><br>Convolution<br>Gradient filters<br>Blurring                                  |
| Sec. 1 | Linear algebra review                                                                                |
| Lec. 3 | <b>Nonlinear filtering</b><br>Template matching<br>Edge detection<br>Bilateral filtering             |
| Lec. 4 | <b>Frequencies</b><br>Amplitude and phase<br>Fourier transform                                       |
| Sec. 2 | More linear algebra                                                                                  |
| Lec. 3 | <b>Fourier analysis</b><br>Fourier basis<br>Compression                                              |
| Lec. 4 | <b>Multi-scale pyramids</b><br>Gaussian and Laplacian pyramids<br>Image blending<br>Texture analysis |
| Sec. 3 | Fourier tutorial                                                                                     |
| Lec. 5 | <b>Statistical models for images</b><br>Image priors<br>Denoising                                    |



### Problem set #2: image blending





| Sec. 3 | Fourier tutorial                |
|--------|---------------------------------|
| Lec. 5 | Statistical models for images   |
|        | Image priors                    |
|        | Denoising                       |
|        | Example-based texture synthesis |
| Lec. 6 | Machine learning                |
|        | Learning                        |
|        | Datasets                        |
|        | Linear regression               |
| Sec. 3 | Learning tutorial               |
| Lec. 7 | Linear models                   |
|        | Logistic regression             |
|        | Gradient descent                |
| Lec. 7 | Neural networks                 |
|        | Nonlinearities                  |
|        | Network structure               |
|        | Regularization                  |
| Sec. 4 | Office hours                    |
| Lec. 8 | Optimization                    |
|        | Backpropagation                 |
|        | SGD                             |
|        |                                 |
| Lec. 9 | <b>Convolutional networks</b>   |
|        | Convolution layers              |
|        | Pooling                         |
|        | Normalization                   |
| Sec. 4 | PyTorch tutorial                |



### Intro to deep learning

Note: Guest lectures / Zoom for Sep. 20 - Oct. 4



|         | Denoising                       |
|---------|---------------------------------|
|         | Example-based texture synthesis |
| Lec. 6  | Machine learning                |
|         | Learning                        |
|         | Datasets                        |
|         | Linear regression               |
| Sec. 3  | Learning tutorial               |
| Lec. 7  | Linear models                   |
|         | Logistic regression             |
|         | Gradient descent                |
| Lec. 7  | Neural networks                 |
|         | Nonlinearities                  |
|         | Network structure               |
|         | Regularization                  |
| Sec. 4  | Office hours                    |
| Lec. 8  | Optimization                    |
|         | Backpropagation                 |
|         | SGD                             |
|         |                                 |
| Lec. 9  | Convolutional networks          |
|         | Convolution layers              |
|         | Normalization                   |
|         | INOITTAIIZALIOIT                |
| Sec. 4  | PyTorch tutorial                |
| Lec. 10 | Scene understanding             |
|         | Scene recognition               |
|         | Semantic segmentation           |
| Lec. 11 | <b>Object detection</b>         |
|         |                                 |

### Problem set #6: image translation



Labels

#### Synthesized image



| Sec. 4  | Project office hours      |
|---------|---------------------------|
| Lec. 16 | Image formation           |
|         | Plenoptic function        |
|         | Pinhole cameras           |
|         | Homogeneous coordinates   |
|         | Projection matrix         |
| Lec. 17 | Multi-view geometry       |
|         | Triangulation             |
|         | Epipolar lines            |
|         | Homographies              |
|         | Warping                   |
| Sec. 4  | Geometry tutorial         |
| Lec. 18 | Multi-view reconstruction |
|         | Feature matching          |
|         | RANSAC                    |
|         | Structure from motion     |
| Lec. 19 | Depth estimation          |
|         | Stereo matching           |
|         | Graphical models          |
|         | Belief propagation        |
| Sec. 4  | Project office hours      |
| Lec. 20 | Motion                    |
|         | Optical flow              |
|         | Aperture problem          |
|         | Multi-scale estimation    |
| Lec. 21 | Color                     |
|         | Color perception          |
|         | Color constancy           |



![](_page_15_Picture_2.jpeg)

### Homework #9: image stitching

![](_page_15_Picture_4.jpeg)

### Physically-based methods

![](_page_15_Picture_6.jpeg)

| Sec. 4  | Project office hours                                                                     |
|---------|------------------------------------------------------------------------------------------|
| Lec. 20 | <b>Motion</b><br>Optical flow<br>Aperture problem<br>Multi-scale estimation              |
| Lec. 21 | <b>Color</b><br>Color perception<br>Color constancy                                      |
| Sec. 4  | Project office hours                                                                     |
| Lec. 22 | <b>Light and shading</b><br>Shape from shading<br>Photometric stereo<br>Intrinsic images |
| Lec. 24 | <b>Language</b><br>Attention<br>Captioning                                               |
| Sec. 4  | Project office hours                                                                     |
| Lec. 25 | <b>Embodied vision</b><br>Learning from demonstrations<br>Reinforcement learning         |
| Lec. 27 | <b>Bias and disinformation</b><br>Datasets<br>Algorithmic fairness<br>Image forensics    |

Advanced topics and applications

![](_page_16_Picture_3.jpeg)

Any questions?

![](_page_17_Picture_2.jpeg)

# 1. Class logistics 2. Computer vision today 3. What makes vision hard? 4. Intro to image filtering

# Today

# Exciting times for computer visionRoboticsMedical imaging3D modeling

![](_page_19_Picture_1.jpeg)

Driving

![](_page_19_Picture_3.jpeg)

![](_page_19_Picture_4.jpeg)

#### Communication

![](_page_19_Picture_6.jpeg)

![](_page_19_Picture_7.jpeg)

![](_page_19_Picture_8.jpeg)

#### Accessibility

![](_page_19_Picture_10.jpeg)

Adapted from: Torralba, Freeman, Isola

### Object detection circa 2010

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_4.jpeg)

### Object detection now

![](_page_21_Picture_1.jpeg)

#### Slide credit: Torralba, Freeman, Isola

#### ["Mask RCNN", He et al., ICCV 2017]

![](_page_21_Picture_4.jpeg)

![](_page_21_Picture_5.jpeg)

### Generative models

A photo of a frog reading the newspaper named "Toaday" written on it. There is a frog printed on the newspaper too.

![](_page_22_Picture_2.jpeg)

#### [Yu et al., "Parti", 2022]

![](_page_22_Picture_4.jpeg)

[Poole et al., "DreamFusion", 2022]

### Robot vision

![](_page_23_Picture_1.jpeg)

#### [Agarwal, Kumar, et al., 2022]

![](_page_23_Picture_3.jpeg)

### Reconstructing 3D scenes

![](_page_24_Picture_1.jpeg)

[Barron et al., "Zip-NeRF", 2023]

![](_page_24_Picture_3.jpeg)

### Different signals, but really similar methods!

![](_page_25_Figure_1.jpeg)

WiFi

![](_page_25_Picture_3.jpeg)

#### [Zhao et al. 2019]

### Language

♣ Model: GPT-4

AH

Write an introduction for computer vision

Computer vision is a field of artificial intelligence (AI) that enables machines to interpret and make sense of visual data. This field of study seeks to construct systems that can automatically extract, analyze, and comprehend useful information from digital images or videos. The implementation of computer vision requires profound knowledge in various disciplines, including but not limited to computer science, mathematics, physics, and neuroscience.

The ultimate goal of computer vision is to emulate the remarkable capabilities of human

![](_page_25_Picture_11.jpeg)

# 1. Class logistics 2. Computer vision today 3. What makes vision hard? 4. Intro to image filtering

# Today

### IO SEE

"What does it mean, to see? The plain man's answer (and Aristotle's, too) would be, to know what is where by looking."

To discover from images what is present in the world, where things are, what actions are taking place, to predict and anticipate events in the world.

# VISION

![](_page_27_Picture_6.jpeg)

#### David Marr

FOREWORD BY Shimon Uliman Tomaso Poggio

Source: Torralba, Freeman, and Isola

![](_page_27_Picture_10.jpeg)

![](_page_27_Picture_11.jpeg)

#### MASSACHUSETTS INSTITUTE OF TECHNOLOGY PROJECT MAC

Artificial Intelligence Group Vision Memo. No. 100.

#### THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

#### July 7, 1966

4.1

#### Slide credit: Torralba, Freeman, Isola

![](_page_28_Picture_8.jpeg)

### To see: perception vs. measurement

![](_page_29_Picture_1.jpeg)

Edward H. Adelson

[Adelson, 1995]

Source: Torralba, Freeman, Isola

![](_page_29_Picture_5.jpeg)

### To see: perception vs. measurement

[Adelson, 1995]

![](_page_30_Picture_2.jpeg)

Source: Torralba, Freeman, Isola

![](_page_30_Picture_4.jpeg)

### Fundamental ambiguities

![](_page_31_Figure_1.jpeg)

#### [Sinha & Adelson, 1993]

Source: A. Torralba

![](_page_31_Picture_5.jpeg)

### Fundamental ambiguities

![](_page_32_Figure_1.jpeg)

consistent with infinitely many 3D structures.

Figure 1. (a) A line drawing provides information only about the x, y coordinates of points lying along the object contours. (b) The human visual system is usually able to reconstruct an object in three dimensions given only a single 2D projection (c) Any planar line-drawing is geometrically

[Sinha & Adelson, 1993]

Source: A. Torralba

![](_page_32_Picture_6.jpeg)

### Fundamental ambiguities

![](_page_33_Picture_1.jpeg)

![](_page_34_Picture_1.jpeg)

### "The dress"

Source: Wikipedia

![](_page_34_Picture_4.jpeg)

Today

# 1. Class logistics

### 2. Computer vision today

# 3. What makes vision hard? Intro to image filtering

# 4.
### Two computer vision problems



### Denoising



#### Edge detection

### Two computer vision problems



### Denoising



#### Edge detection

### Case study: image denoising

#### Image



## Goal: recover the original image

### Noise

#### Noisy image



## Image denoising problem



### In practice: low light photography, "dead" pixels, interference, etc. We'll see a lot more later...



Image source: wikipedia





### Image denoising





### Image denoising





#### Replace each pixel with a weighted average of its neighborhood

### Image denoising

Photo by Fredo Durand



### Images as arrays

#### An image



### Images as arrays

#### 0 0

# How it's represented in the computer

| 0  | 0  | 0 | 0 |
|----|----|---|---|
| 90 | 90 | 0 | 0 |
| 90 | 90 | 0 | 0 |
| 90 | 90 | 0 | 0 |
| 90 | 90 | 0 | 0 |
| 90 | 90 | 0 | 0 |
| 0  | 0  | 0 | 0 |

### Images as arrays

#### How it's represented in the computer

| 0 | 0  | 0  | 0  | 0  | 0 | 0 |
|---|----|----|----|----|---|---|
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 0  | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0  | 0  | 0  | 0  | 0 | 0 |

### One solution: weighted sum

- The weights are called the **filter kernel**.

| 1 | 1 | 1 |
|---|---|---|
| 9 | 9 | 9 |
| 1 | 1 | 1 |
| 9 | 9 | 9 |
| 1 | 1 | 1 |
| 9 | 9 | 9 |

"box filter"

• Replace each pixel with a weighted average of the pixels around it.

• The weights for averaging the pixels in a 3x3 pixel neighborhood:





| 0 | 0  | 0  | 0  | 0  | 0 | 0 |
|---|----|----|----|----|---|---|
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 0  | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0  | 0  | 0  | 0  | 0 | 0 |

### Moving average







| 1 | 1 | 1  | 1  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|---|---|
| - | 1 | 1  | 1  | 90 | 90 | 0 | 0 |
| " | 1 | 1  | 1  | 90 | 90 | 0 | 0 |
|   | 0 | 90 | 90 | 90 | 90 | 0 | 0 |
|   | 0 | 90 | 0  | 90 | 90 | 0 | 0 |
|   | 0 | 90 | 90 | 90 | 90 | 0 | 0 |
|   | 0 | 0  | 0  | 0  | 0  | 0 | 0 |

## Moving average



#### Filter kernel



| 0 | 0  | 0  | 0  | 0  | 0 | 0 |
|---|----|----|----|----|---|---|
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 0  | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0  | 0  | 0  | 0  | 0 | 0 |

#### Output



# $\frac{1}{9}$

#### Filter kernel

### Moving average

| 0 | 0  | 0  | 0  | 0  | 0 | 0 |
|---|----|----|----|----|---|---|
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 0  | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0  | 0  | 0  | 0  | 0 | 0 |

### Moving average







| 0 | 0  | 0  | 0  | 0  | 0 | 0 |
|---|----|----|----|----|---|---|
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 0  | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0  | 0  | 0  | 0  | 0 | 0 |

#### Output



# $\frac{1}{9}$

#### Filter kernel

### Moving average

| 0 | 0  | 0  | 0  | 0  | 0 | 0 |
|---|----|----|----|----|---|---|
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 0  | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0  | 0  | 0  | 0  | 0 | 0 |

### Moving average



#### Filter kernel



| 0 | 0  | 0  | 0  | 0  | 0 | 0 |
|---|----|----|----|----|---|---|
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 0  | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0  | 0  | 0  | 0  | 0 | 0 |

## Moving average



| 40 | 60 |  |  |
|----|----|--|--|
|    |    |  |  |
|    |    |  |  |
|    | ?  |  |  |
|    |    |  |  |
|    |    |  |  |

| 0 | 0  | 0  | 0  | 0  | 0 | 0 |
|---|----|----|----|----|---|---|
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 0  | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0  | 0  | 0  | 0  | 0 | 0 |

## Moving average



| 40 | 60 |  |  |
|----|----|--|--|
|    |    |  |  |
|    |    |  |  |
|    | 80 |  |  |
|    |    |  |  |
|    |    |  |  |

| 0 | 0  | 0  | 0  | 0  | 0 | 0 |
|---|----|----|----|----|---|---|
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 90 | 0  | 90 | 90 | 0 | 0 |
| 0 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0  | 0  | 0  | 0  | 0 | 0 |

### Moving average



#### Filter kernel

| 40 | 60 | 60 | 40 | 20 |  |
|----|----|----|----|----|--|
| 60 | 90 | 60 | 40 | 20 |  |
| 50 | 80 | 80 | 60 | 30 |  |
| 50 | 80 | 80 | 60 | 30 |  |
| 30 | 50 | 50 | 40 | 20 |  |
|    |    |    |    |    |  |

## Moving average

| 0     | 0  | 0  | 0  | 0  | 0 | 0 |
|-------|----|----|----|----|---|---|
| 0     | 90 | 90 | 90 | 90 | 0 | 0 |
| 0     | 90 | 90 | 90 | 90 | 0 | 0 |
| 0     | 90 | 90 | 90 | 90 | 0 | 0 |
| 0     | 90 | 0  | 90 | 90 | 0 | 0 |
| 0     | 90 | 90 | 90 | 90 | 0 | 0 |
| 0     | 0  | 0  | 0  | 0  | 0 | 0 |
| Input |    |    |    |    |   |   |



#### Filter kernel

|   | 40 | 60 | 60 | 40 | 20 |  |
|---|----|----|----|----|----|--|
|   | 60 | 90 | 60 | 40 | 20 |  |
|   | 50 | 80 | 80 | 60 | 30 |  |
| ? | 50 | 80 | 80 | 60 | 30 |  |
|   | 30 | 50 | 50 | 40 | 20 |  |
|   |    |    |    |    |    |  |



### Handling boundaries



11x11 box

Source: Torralba, Freeman, Isola



| 0 | 0     | 0  | 0  | 0  | 0  | 0 | 0 | 0  |
|---|-------|----|----|----|----|---|---|----|
| 0 | 0     | 0  | 0  | 0  | 0  | 0 | 0 | 0  |
| 0 | 0     | 90 | 90 | 90 | 90 | 0 | 0 | 0  |
| 0 | 0     | 90 | 90 | 90 | 90 | 0 | 0 | 0  |
| 0 | 0     | 90 | 90 | 90 | 90 | 0 | 0 | 0  |
| 0 | 0     | 90 | 0  | 90 | 90 | 0 | 0 | -0 |
| 0 | 0     | 90 | 90 | 90 | 90 | 0 | 0 | 0  |
| 0 | 0     | 0  | 0  | 0  | 0  | 0 | 0 | 0  |
| 0 | 0     | 0  | 0  | 0  | 0  | 0 | 0 | 0  |
| L | Input |    |    |    |    |   |   | 1  |



# Output

Input



zero padding

#### circular repetition





### Handling boundaries

#### mirror edge pixels



#### repeat edge pixels



#### ground truth









Source: Torralba, Freeman, Isola







Original



\*









Original



\*

"Impulse"



## Filtered (no change)

Source: D. Lowe





Original



\*









Original





\*



Shifted left By 1 pixel

Source: D. Lowe



Original



 $\frac{1}{9}$ 

\*

"Box filter"









Original



 $\frac{1}{9}$ 

\*











#### Original

| 1<br>9 | $-\frac{1}{9}$ | $-\frac{1}{9}$ |
|--------|----------------|----------------|
| 1<br>9 | <u>17</u><br>9 | $-\frac{1}{9}$ |
| 1<br>9 | $-\frac{1}{9}$ | $-\frac{1}{9}$ |





#### Original



## **Sharpening filter:** Accentuates differences with local average

Source: D. Lowe



### Sharpening







After







\*

#### Original

### Is there a neighborhood filter that does this?



### Two computer vision problems



#### Denoising



#### **Edge detection**

## Edge detection




## Edge detection on grayscale images

First, convert to grayscale:  

$$I_{gray}[y, x] = \frac{1}{3} \left( I_{rgb}[y, x, 0] + I_{rgb}[y, x, 1] + I_{rgb}[y, x] \right)$$





# Images as functions



0.6 0.4 0.2 0.0 0



## $\mathbf{I}(x, y) = \text{intensity at pixel (x, y)}$



# Finding edges in the image



- Approximation of image derivative:

$$\simeq \mathbf{I}(x,y) - \mathbf{I}(x-1,y)$$

- Edge strength:  $E(x, y) = \|\nabla \mathbf{I}(x, y)\|^2$
- Edge orientation:  $\theta(x,y) = \angle \nabla \mathbf{I} = \arctan \frac{\partial \mathbf{I} / \partial y}{\partial \mathbf{I} / \partial x}$

Adapted from A. Torralba



# Derivatives

### Pseudocode for *x* derivative:

1 Ix = np.zeros(I.shape)
2 # I is an H x W image
3 for y in range(I.shape[0]):
4 for x in range(I.shape[1]):
5 if x-1 < 0:
6 Ix[y, x] = 0
7 else:
8 Ix[y, x] = I[y, x] - I[y, x-1]</pre>







### Image

"Change in x"



### "Change in y"





### Image





 $I_X$ 



Total edge strength:  $S = I_X^2 + I_Y^2$ 



### Image



### Total edge strength

# As neighborhood filtering

# $d_x = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \qquad d_y = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 0 \end{bmatrix}$

 $\frac{\partial \mathbf{I}}{\partial x} \simeq \mathbf{I}(x, y) - \mathbf{I}(x - 1, y)$  $\partial x$ 



# As neighborhood filtering

\*



# $\begin{bmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} =$



# Two computer vision problems



### Denoising

## Why are we studying these problems, again?



### Edge detection



### Start with pure random noise, and then denoise!

Source: A. Ramesh







Source: A. Ramesh

Denoise a bit more...







### Finally...

Source: A. Ramesh





### **Diffusion:** generate images by denoising

(advanced application covered at end of class)

Source: A. Ramesh



# Neighborhood filtering: a powerful idea

### Convolutional neural networks: machine learning systems built on neighborhood filtering.



Source: Torralba, Freeman, Isola

# Is this the best we can do?



## Next class: more image filtering

