Lecture 13: Video and temporal models
Announcements

• PS6 due next Weds.
• Project proposal information out
• Rolling deadline, due Nov. 13
• Discussion section: project office hours + GANs
Project proposal

- Due November 13th
- Rolling deadline
- What we want: 1 page summary of what you’d like to do.
- Not worth much of total grade. Graded pass/fail. We just want to know whether it’s an acceptable project.
2 Project ideas

To help you think of projects, we’ve provided a few ideas below. Please note that these projects only cover a very small portion of the possible things you can do — most involve reimplementing and extending a paper. We encourage you to propose your own, creative project ideas, and to use these as a starting point! We may also add new project ideas to this list in the coming weeks.

Applications of vision. Apply computer vision to a task that’s important to you! We highly encourage this option if it appeals to you, since it’s often the most fun option. For example, students in previous EECS 442 classes have applied computer vision to Settlers of Catan, measured the volume of liquid that could be held by a teacup, and analyzed the coffee coming out of an espresso machine. Often these projects will involve applying a few different computer vision models to a task, and analyzing the results.

Image synthesis. Implement a (small) version of a generative image model, such as VQ-GAN [1] or a diffusion model [2].

Extend an existing image synthesis model. Extend an existing image synthesis model, such as Stable Diffusion [3] in an interesting way (see here [4] for architecture details).

Video magnification. Implement a motion magnification algorithm, such as the method of Wadhwa et al. [5]. Try running it on your own videos, too.

Stereo. Implement a system that can estimate depth from a collection of photos using stereo. An easy-to-implement reference point is Goesele et al. [6].
kindergarten classroom

Source: A. Torralba
“What will the girl do next?”
Simple video task: action recognition

Examples from the Kinetics dataset [Carreira et al. 2017 - 2019]
700 human activity classes, 650K 10-sec videos
Simple model: averaging

\[
\frac{1}{3} p(\text{making latte art} \mid l_1) + \frac{1}{3} p(\text{making latte art} \mid l_2) + \frac{1}{3} p(\text{making latte art} \mid l_3)
\]

Can’t analyze motion.
Temporal filtering
Temporal filtering

Source: Freeman, Torralba, Isola
Videos

Source: Freeman, Torralba, Isola
Cube size = 128x128x90

Source: Freeman, Torralba, Isola
Videos

Cube size = 128x128x90

Source: Freeman, Torralba, Isola
Examples of temporal filtering
Temporal median filtering

Source: Alexei Efros
Background subtraction

Source: Alexei Efros
Finding subtle color variations

• The face gets slightly redder when blood flows

Source: D. Hoiem
Amplifying Subtle Color Variations

\[\text{Result} \]

\[\text{Spatially averaged luminance} \times \text{Temporal filter} = \text{Result} \]

Source: D. Hoiem
Heart Rate Extraction

Peak detection

Temporally bandpassed trace (one pixel)

Pulse locations

Source: D. Hoiem
Recall: sharpening filter

Original

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}
\]

\[
\frac{1}{9}
\]

Source: D. Lowe
Magnifying tiny motions

Spatial Decomposition → Temporal filtering → Reconstruction

Laplacian Pyramid

Bandpass filter intensity at each pixel over time

Amplify bandpassed signal and add back to original

Source: D. Hoiem
Color amplification

Source: [Wadhwa et al., Phase-based Video Motion Processing. SIGGRAPH 2013, Wu et al. SIGGRAPH 2012]
Motion magnification

Original

Source

[Wu et al., SIGGRAPH 2012]
Space-time convolutions
3D space-time convolution
3D space-time CNN

[Source: FeatureNet: Machining feature recognition based on 3D Convolution Neural Network]
Designing a 3D CNN architecture

Starting point: 2D image CNNs

ResNet [Kaiming He et al. 2016]
Inflated convolutions

- Can reuse 2D architectures. [Carreira et al. 2017]
- Pretrain with 2D nets ("inflating" 2D filter to 3D)
Separable convolutions

3D convolution

\[3 \times 3 \times 3 = 27 \]

Separate space/time

\[1 \times 3 \times 3 \text{ conv} \]
\[3 \times 1 \times 1 \text{ conv} \]

Often works well. Faster and fewer parameters.

\[3 \times 3 + 3 = 12 \]

[Tran et al., 2018], [Xie et al., 2018]
Learned space-time filters

(7 × 7 × 7) I3D conv1 filters, [Carreira & Zisserman 2017]
When do we actually need motion?

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy on miniKinetics (213 classes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-frame average (25 frames)</td>
<td>70.1%</td>
</tr>
<tr>
<td>I3D CNN</td>
<td>74.1%</td>
</tr>
</tbody>
</table>

Adapted from David Fouhey

[Carreira & Zisserman 2017]
When do we actually need motion?

Let’s look at these again:

Making latte art Jaywalking Grooming dog
When do we actually need motion?

- Single-frame models usually don’t work well.
- But single-image model + temporal pooling often is surprisingly competitive.
- In many tasks that use video, time often provides extra samples, rather than motion.
- Later in the course, we’ll see tasks where motion is essential, such as 3D reconstruction.

Photo by H. Edgerton
Recurrent networks
Rufus

Source: Torralba, Freeman, Isola
Memory unit

Rufus

\[W \]

Source: Torralba, Freeman, Isola
Recurrent Neural Networks (RNNs)

Source: Torralba, Freeman, Isola
Recurrent Neural Networks (RNNs)

Outputs \hat{y}

Hidden h

Inputs x

time

Source: Torralba, Freeman, Isola
Recurrent Neural Networks (RNNs)

\[
\begin{align*}
\hat{y}(t) &= g(h(t)) \\
h(t) &= f(h(t-1), x(t))
\end{align*}
\]

Source: Torralba, Freeman, Isola
Recurrent Neural Networks (RNNs)

\[h^{(t)} = f(h^{(t-1)}, x^{(t)}) \]
\[y^{(t)} = g(h^{(t)}) \]
Recurrent Neural Networks (RNNs)

\[
\begin{align*}
a^{(t)} &= Wh^{(t-1)} + Ux^{(t)} + b \\
h^{(t)} &= \tanh(a^{(t)}) \\
o^{(t)} &= Vh^{(t)} + c \\
\hat{y}^{(t)} &= \text{softmax}(o^{(t)})
\end{align*}
\]

Source: Torralba, Freeman, Isola
Deep Recurrent Neural Networks (RNNs)

Outputs \hat{y}

Hidden

Inputs x

Source: Torralba, Freeman, Isola
Unrolling an RNN

Outputs \hat{y}

Hidden h

Inputs x

Equivalent to "unrolled" network with shared weights
Backprop in RNNs

Outputs \hat{y}

Hidden h

Inputs x

\[
\frac{\partial \hat{y}(t)}{\partial x^{(0)}} = \frac{\partial \hat{y}(t)}{\partial h(t)} \frac{\partial h(t)}{\partial h^{(t-1)}} \cdots \frac{\partial h^{(1)}}{\partial h^{(0)}} \frac{\partial h^{(0)}}{\partial x^{(0)}}
\]

Source: Torralba, Freeman, Isola
The problem of long-range dependences

- Capturing long-range dependences requires propagating information through a long chain.
- Old observations are forgotten.
- Stochastic gradients become high variance (noisy), and gradients may **vanish** or **explode**.

Source: Torralba, Freeman, Isola
Memory unit

Rufus

Rufus!

W

W

Source: Torralba, Freeman, Isola

53
LSTMs
Long Short Term Memory

• A special kind of RNN designed to avoid forgetting [Hochreiter & Schmidhuber 1995].

• Related to ResNets’ bias is that state transition is an identity function.

• This way the default behavior is not to forget an old state. Instead of forgetting by default, the network has to learn to forget.

• Bit of a complex design. Works well but simpler methods like Gated Recurrent Unit (GRU) are competitive [Jozefowicz et al. 2015].

Source: Torralba, Freeman, Isola
[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]
$C_t = \text{Cell state}$

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]

Source: Torralba, Freeman, Isola
Decide what information to throw away from the cell state.

Forget gate: each element of cell state is multiplied by:

\[f_t = \sigma (W_f \cdot [h_{t-1}, x_t] + b_f) \]

1. ~1 (remember) or ~0 (forget).
Forget selected old information, write selected new information.

\[C_t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}_t \]
Decide what new information to add to the cell state.

\[i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i) \]
\[\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \]

which components to write to
what to write into those components

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]
Forget selected old information, write selected new information.

\[C_t = f_t \ast C_{t-1} + i_t \ast \tilde{C}_t \]
After having updated the cell state's information, decide what to output.

\[
o_t = \sigma(W_o [h_{t-1}, x_t] + b_o)
\]
\[
h_t = o_t \cdot \tanh(C_t)
\]

Source: Torralba, Freeman, Isola
Some uses for RNNs

Figure from [Donahue et al. 2016]
Problems with RNNs

- Hard to obtain motion information.
- Results in very deep networks (often slow, hard to train)
- Doesn’t parallelize well
- Depth of network = length of the sequence
Basic transformer model

- Do we really need these sequence models?
- Sequence-to-sequence architecture using only point-wise processing and attention (no recurrent units or convolutions)

Encoder: receives entire input sequence and outputs encoded sequence of the same length

Decoder: predicts next token conditioned on encoder output and previously predicted tokens

Self-attention

- Used to capture context within the sequence

As we are encoding “it”, we should focus on “the animal”

As we are encoding “it”, we should focus on “the street”

Source: S. Lazebnik
Self-attention layer

- **Query vectors:** \(Q = XW_Q \)
- **Key vectors:** \(K = XW_K \)
- **Value vectors:** \(V = XW_V \)
- **Similarities:** *scaled dot-product attention*
 \[
 E_{i,j} = \frac{(Q_i \cdot K_j)}{\sqrt{D}} \quad \text{or} \quad E = QK^T / \sqrt{D}
 \]
 \((D \text{ is the dimensionality of the keys})\)
- **Attn. weights:** \(A = \text{softmax}(E, \text{ dim } = 1) \)
- **Output vectors:**
 \[
 Y_i = \sum_j A_{i,j}V_j \quad \text{or} \quad Y = AV
 \]

Adapted from J. Johnson and S. Lazebnik.
Multi-head attention

• Run h attention models in parallel on top of different linearly projected versions of Q, K, V; concatenate and linearly project the results

• Intuition: enables model to attend to different kinds of information at different positions

Source: S. Lazebnik
Transformer blocks

- **A Transformer** is a sequence of transformer blocks
 - Vaswani et al.: N=12 blocks, embedding dimension = 512, 6 attention heads
 - **Add & Norm**: residual connection followed by [layer normalization](#)
 - **Feedforward**: two linear layers with ReLUs in between, applied independently to each vector
 - Attention is the only interaction between inputs!

Source: S. Lazebnik
Positional encoding

- To give transformer information about ordering of tokens, add function of position (based on sines and cosines) to every input.
Transformer architecture: Zooming back out

Source: S. Lazebnik

A. Vaswani et al., Attention is all you need, NeurIPS 2017
Language translation results

English-German Translation Quality

<table>
<thead>
<tr>
<th>Method</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNMT (RNN)</td>
<td>24</td>
</tr>
<tr>
<td>ConvS2S (CNN)</td>
<td>25</td>
</tr>
<tr>
<td>SliceNet (CNN)</td>
<td>26</td>
</tr>
<tr>
<td>Transformer</td>
<td>30</td>
</tr>
</tbody>
</table>

English-French Translation Quality

<table>
<thead>
<tr>
<th>Method</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNMT (RNN)</td>
<td>39</td>
</tr>
<tr>
<td>ConvS2S (CNN)</td>
<td>40</td>
</tr>
<tr>
<td>Transformer</td>
<td>42</td>
</tr>
</tbody>
</table>

Source: S. Lazebnik

Different ways of processing sequences

Works on **ordered sequences**
- **Pros:** Good for long sequences: After one RNN layer, h_T "sees" the whole sequence
- **Con:** Not parallelizable: need to compute hidden states sequentially. Very deep.
- **Con:** Hidden states have limited expressive capacity

Works on **multidimensional grids**
- **Pros:** Each output can be computed in parallel (at training time)
- **Con:** Bad at long sequences: Need to stack many conv layers for outputs to "see" the whole sequence

- **Works on sets of vectors**
 - **Pros:** Good at long sequences: after one self-attention layer, each output "sees" all inputs!
 - **Pro:** Each output can be computed in parallel (at training time)
 - **Con:** Memory-intensive. $O(N^2)$ without modifications.

Source: S. Lazebnik
Split an image into patches, feed linearly projected patches into standard transformer encoder

* With patches of 14x14 pixels, you need 16x16=256 patches to represent 224x224 images

A. Dosovitskiy et al. *An image is worth 16x16 words: Transformers for image recognition at scale*. ICLR 2021

Source: S. Lazebnik
Next class: representation learning