Lecture 16: Image formation

Announcements

- Reminder: PS2 grades out
- Next problem sets:
- PS7: representation learning
- PS8: panorama stitching

Today

Camera models
Projection equations

The structure of ambient light

The structure of ambient light

What information does this light provide?

The Plenoptic Function

Adelson \& Bergen, 91

The intensity P can be parameterized as:

P(| $\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ |
| :---: |
| Eye position |

The Plenoptic Function

Adelson \& Bergen, 91

The intensity P can be parameterized as:

$$
\begin{aligned}
& \mathrm{P}(\theta, \phi, \quad \mathrm{X}, \mathrm{Y}, \mathrm{Z}) \\
& \text { Angle }
\end{aligned}
$$

The Plenoptic Function

Adelson \& Bergen, 91

The intensity P can be parameterized as:

$$
\begin{gathered}
\mathrm{P}(\theta, \phi, \lambda, \mathrm{t}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}) \\
\text { Wavelength, time }
\end{gathered}
$$

The Plenoptic Function

Adelson \& Bergen, 91

The intensity P can be parameterized as:

$$
\mathrm{P}(\theta, \phi, \lambda, \mathrm{t}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})
$$

Full plenoptic function

Making a camera

Idea \#1: put a piece of film in front of an object.

Pinhole camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture

Upside down images

Useful concept: virtual image

Pinhole camera

Photograph by Abelardo Morell, 1991

Shrinking the aperture

- Why not make the aperture as small as possible?
- Less light gets through
- Diffraction effects...

Shrinking the aperture

Adding a lens

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
- other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

The eye

The human eye is a camera

- Iris - colored annulus with radial muscles
- Pupil - the hole (aperture) whose size is controlled by the iris
- What's the "film"?
- Photoreceptor cells (rods and cones) in the retina

Eyes in nature:
 eyespots to pinhole camera

Pinhole cameras in unexpected places

Tree shadow during a solar eclipse
photo credit: Nils van der Burg
http://www.physicstogo.org/index.cfm

$\nwarrow \pi$
 Shadows?

Accidental pinhole camera

Window turned into a pinhole
View outside

Window open

Window turned into a pinhole

Accidental pinhole camera

See Zomet, A.; Nayar, S.K. CVPR 2006 for a detailed analysis.

Pinhole and Anti-pinhole cameras

Mixed accidental pinhole and anti-pinhole cameras

Mixed accidental pinhole and anti-pinhole cameras

Mixed accidental pinhole and anti-pinhole cameras

Room with a window

Person in front of the window
Difference image

$=?$

Mixed accidental pinhole and anti-pinhole cameras

Body as the occluder

Looking for a small accidental occluder

Looking for a small accidental occluder

Body as the occluder

Hand as the occluder

View outside the window

Projection from 3D to 2D

Point of observation

2D image

Projection from 3D to 2D

3D world

Painted backdrop

2D image

Fooling the eye

Fooling the eye

Making of 3D sidewalk art: http://www.youtube.com/watch?v=3SNYtd0Ayt0

Müller-Lyer Illusion

Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze_muelue/index.html

Modeling projection

- The coordinate system
- We use the pinhole model as an approximation
- Put the optical center (aka Center of Projection, or COP) at the origin
- Put the Image Plane (aka Projection Plane) in front of the COP
- The camera looks down the positive z-axis, and the y-axis points down

Modeling projection

- Projection equations
- Compute intersection with image plane of ray from ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) to COP
- Derived using similar triangles

$$
(x, y, z) \rightarrow\left(f \frac{x}{z}, f \frac{y}{z}, f\right)
$$

- We get the projection by throwing out the last coordinate:

$$
(x, y, z) \rightarrow\left(f \frac{x}{z}, f \frac{y}{z}\right)
$$

Perspective projection

Perspective projection

Similar triangles: y/f=Y/Z

$$
y=f Y / Z
$$

How can we represent this more compactly?

Homogeneous coordinates

Trick: add one more coordinate:

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

homogeneous image
coordinates

Converting from homogeneous coordinates

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)
$$

Application: translation with homogeneous coordinates

$$
\begin{aligned}
& \mathbf{T}=\left[\begin{array}{llc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right] \\
& {\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]}
\end{aligned}
$$

Affine transformations

$$
\mathbf{T}=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

any transformation represented by a 3×3 matrix with last row [0001] we call an affine transformation
$\left[\begin{array}{lll}a & b & c \\ d & e & f \\ 0 & 0 & 1\end{array}\right]$

Examples of Affine Transformations

$$
\begin{array}{cc}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} & {\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]=} \\
\text { Translate } & {\left[\begin{array}{ccc}
\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 \\
0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]} \\
\text { Scale } \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} & {\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & \boldsymbol{s} \boldsymbol{h}_{\boldsymbol{x}} & 0 \\
\boldsymbol{s}_{\boldsymbol{y}} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]} \\
\text { 2D in-plane rotation } & \text { Shear }
\end{array}
$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right] }
\end{aligned}\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\underset{y}{\left[\begin{array}{c}
x \\
y \\
z / f
\end{array}\right] \Rightarrow\left(f \frac{x}{z}, f \frac{y}{z}\right)} \begin{gathered}
{\left[\begin{array}{c}
{[\text { ivide by third coordinate }}
\end{array}\right.}
\end{gathered}
$$

This is known as perspective projection

- The matrix is the projection matrix

Perspective Projection

How does scaling the projection matrix change the transformation?

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z / f
\end{array}\right] \Rightarrow\left(f \frac{x}{z}, f \frac{y}{z}\right)
$$

$\begin{aligned} & \text { What if we } \\ & \text { scale by } f \text { ? }\end{aligned}\left[\begin{array}{llll}f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]=\left[\begin{array}{c}f x \\ f y \\ z\end{array}\right] \Rightarrow\left(f \frac{x}{z}, f \frac{y}{z}\right)$
Scaling a projection matrix produces an equivalent projection matrix!

Orthographic projection

- Special case of perspective projection
- Distance from the COP to the PP is infinite

- Good approximation for telephoto optics
- Also called "parallel projection": (x, y, z) \rightarrow (x, y)
- What's the projection matrix?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

Orthographic projection

Perspective projection

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points
- Lines \rightarrow lines (collinearity is preserved)
- But line through focal point projects to a point
- Planes \rightarrow planes (or half-planes)
- But plane through focal point projects to line

Projection properties

- Parallel lines converge at a vanishing point
- Each direction in space has its own vanishing point
- But lines parallel to the image plane remain parallel

Camera parameters

- How can we model the geometry of a camera?

Three important coordinate systems:

1. World coordinates
2. Camera coordinates
3. Image coordinates

How do we project a given world point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) to an image point?

Coordinate frames

Camera parameters

To project a point (x, y, z) in world coordinates into a camera

- First transform (x, y, z) into camera coordinates
- Need to know
- Camera position (in world coordinates)
- Camera orientation (in world coordinates)
- Then project into the image plane to get image (pixel) coordinates
- Need to know camera intrinsics

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principal point (c_{x}, c_{y}), pixel aspect size a
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$
\mathbf{x}=\left[\begin{array}{c}
s x \\
s y \\
s
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\mathbf{\Pi X}
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

$$
\boldsymbol{\Pi}=\underset{\text { intrinsics }}{\left[\begin{array}{ccc}
f & s & c_{x} \\
0 & \alpha f & c_{y} \\
0 & 0 & 1
\end{array}\right]} \underset{\text { projection }}{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]} \underset{\text { rotation }}{\left[\begin{array}{cc}
\mathbf{R}_{3 \times 3} & \mathbf{0}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 0
\end{array}\right]} \underset{\text { translation }}{\left[\begin{array}{cc}
\mathbf{I}_{3 \times 3} & \mathbf{T}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 0
\end{array}\right]}
$$

- The definitions of these parameters are not completely standardized

Projection matrix

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by -c

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by -c
How do we represent translation as a matrix multiplication?
$\mathbf{T}=\left[\begin{array}{ccc}\mathbf{I}_{3 \times 3} & -\mathbf{C} \\ 0 & 0 & 0\end{array}\right]$

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by -c
Step 2: Rotate by \mathbf{R}

3×3 rotation matrix

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by -c Step 2: Rotate by R

(with extra row/column of [$\left.\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$)

Perspective projection

K
(intrinsics)
(converts from 3D rays in camera coordinate system to pixel coordinates)
α : aspect ratio (1 unless pixels are not square)
S : skew (0 unless pixels are shaped like rhombi/parallelograms)
$\left(c_{x}, c_{y}\right)$: principal point $((\mathrm{w} / 2, \mathrm{~h} / 2)$ unless optical axis doesn't intersect projection plane at image center)

Typical intrinsics matrix

$$
\mathbf{K}=\left[\begin{array}{llc}
f & 0 & c_{x} \\
0 & f & c_{y} \\
0 & 0 & 1
\end{array}\right]
$$

- 2D affine transform corresponding to a scale by f (focal length) and a translation by (c_{x}, c_{y}) (principal point)
- Maps 3D rays to 2D pixels

Focal length

- Can think of as "zoom"

50 mm

200 mm

- Also related to field of view

Changing focal length

Wide angle

Standard

Telephoto

http://petapixel.com/2013/01/11/how-focal-length-affects-your-subjects-apparent-weight-as-seen-with-a-cat/

Projection matrix

Projection matrix

$$
\begin{aligned}
& {[\mathbf{R} \mid-\mathbf{R c}]} \\
& \text { (sometimes called } \mathbf{t} \text {) } \\
& \boldsymbol{\Pi}=\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}]
\end{aligned}
$$

Projection matrix

Distortion

- Radial distortion of the image
- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Modeling distortion

$$
\begin{array}{cl}
\begin{array}{cl}
(\hat{x}, \hat{y}, \widehat{z}) \\
\text { Project } \\
\text { to "normalized" } \\
\text { image coordinates }
\end{array} & x_{n}^{\prime}=\widehat{x} / \widehat{z} \\
& y_{n}^{\prime}=\widehat{y} / \widehat{z} \\
& r^{2}=x_{n}^{\prime 2}+y_{n}^{\prime 2} \\
\text { Apply radial distortion } & x_{d}^{\prime}=x_{n}^{\prime}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
& y_{d}^{\prime}=y_{n}^{\prime}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
& x^{\prime}=f x_{d}^{\prime}+x_{c} \\
\begin{array}{c}
\text { Apply focal length } \\
\text { translate image center }
\end{array} & y^{\prime}=f y_{d}^{\prime}+y_{c}
\end{array}
$$

- To model lens distortion
- Use above projection operation instead of standard projection matrix multiplication

Correcting radial distortion

from Helmut Dersch

Next class: More geometry!

