Lecture 16: Image formation

Announcements

- Reminder: PS2 grades out
- Next problem sets:
 - PS7: representation learning
 - PS8: panorama stitching
- earning ning

• Camera models Projection equations

Today

The structure of ambient light

The structure of ambient light

What information does this light provide?

5 Source: Freeman, Torralba, Isola

P (

X, Y, Z) Eye position

Angle

P(θ, φ, X, Y, Z)

P (θ, φ, λ, t, X, Y, Z) Wavelength, time

P (θ, φ, λ, t, X, Y, Z) Full plenoptic function

Idea #1: put a piece of film in front of an object.

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture

Upside down images

Useful concept: virtual image

12 Source: Freeman, Torralba, Isola

http://www.foundphotography.com/PhotoThoughts/archives/2005/04/pinhole_camera_2.html

Shrinking the aperture

2 mm

0.6mm

- - Less light gets through
 - *Diffraction* effects...

1 mm

0.35 mm

• Why not make the aperture as small as possible?

Source: N. Shavely

Shrinking the aperture

0.6mm

0.15 mm

1 mm

0.35 mm

Adding a lens

A lens focuses light onto the film - There is a specific distance at which objects are "in focus" • other points project to a "circle of confusion" in the image

- Changing the shape of the lens changes this distance

The human eye is a camera

- Iris colored annulus with radial muscles
- **Pupil** the hole (aperture) whose size is controlled by the iris What's the "film"?
 - Photoreceptor cells (rods and cones) in the **retina**

Eyes in nature: eyespots to pinhole camera

http://upload.wikimedia.org/wikipedia/commons/6/6d/Mantis_shrimp.jpg

Pinhole cameras in unexpected places

Tree shadow during a solar eclipse

photo credit: Nils van der Burg http://www.physicstogo.org/index.cfm

Accidental pinhole camera

Source: Freeman, Torralba, Isola

Window turned into a pinhole

View outside

Window open

Window turned into a pinhole

Source: Freeman, Torralba, Isola

Outside scene

See Zomet, A.; Nayar, S.K. CVPR 2006 for a detailed analysis.

Source: Freeman, Torralba, Isola

Mixed accidental pinhole and anti-pinhole cameras

Mixed accidental pinhole and anti-pinhole cameras

Mixed accidental pinhole and anti-pinhole cameras

Room with a window

40

Mixed accidental pinhole and anti-pinhole cameras

Body as the occluder

View outside the window

Looking for a small accidental occluder

Body as the occluder

Hand as the occluder

View outside the window

Projection from 3D to 2D

3D world

Point of observation

Slide by A. Efros Figure source: Stephen E. Palmer, 2002

Projection from 3D to 2D 3D world

Painted backdrop

2D image

Source: S. Lazebnik

Fooling the eye

Fooling the eye

Making of 3D sidewalk art: <u>http://www.youtube.com/watch?v=3SNYtd0Ayt0</u>

Müller-Lyer Illusion

Source: N. Snavely, S. Lazebnik

Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze_muelue/index.html

Source: N. Snavely, S. Lazebnik

49

Modeling projection

- The coordinate system
 - We use the pinhole model as an approximation
 - Put the optical center (aka Center of Projection, or COP) at the origin
 - Put the Image Plane (aka Projection Plane) in front of the COP
 - The camera looks down the *positive* z-axis, and the y-axis points down

Modeling projection

Projection equations

- Compute intersection with image plane of _____ ray from (X,Y,Z) to COP
- Derived using similar triangles —

$$(x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z}, f)$$

 We get the projection by throwing out the last coordinate:

$$(x, y, z) \to (f\frac{x}{z}, f\frac{y}{z})$$

51 Source: N. Snavely

Perspective projection

Perspective projection

Similar triangles: y / f = Y / Zy = f Y/Z

How can we represent this more compactly?

Homogeneous coordinates

Trick: add one more coordinate:

$$(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

homogeneous image coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

Application: translation with homogeneous coordinates

$\mathbf{T} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$

Affine transformations

$\mathbf{T} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \blacklozenge any transformation represented by a 3x3 matrix with last row [001] we call an$ *affine*transformation

$$\left[egin{array}{cccc} a & b & c \ d & e & f \ 0 & 0 & 1 \end{array}
ight]$$

Examples of Affine Transformations

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2D *in-plane* rotation

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$
Shear

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates: $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} =$

This is known as **perspective projection** The matrix is the projection matrix

$$= \begin{bmatrix} x \\ y \\ z/f \end{bmatrix} \Rightarrow (f\frac{x}{z}, f\frac{y}{z})$$

divide by third coordinate

Perspective Projection

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
What if we scale by f?
$$\begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Scaling a projection matrix produces an equivalent projection matrix!

How does scaling the projection matrix change the transformation?

$$= \begin{bmatrix} x \\ y \\ z/f \end{bmatrix} \Rightarrow (f\frac{x}{z}, f\frac{y}{z})$$

$$= \begin{bmatrix} fx\\ fy\\ z \end{bmatrix} \Rightarrow (f\frac{x}{z}, f\frac{y}{z})$$

Orthographic projection

- Special case of perspective projection
 - Distance from the COP to the PP is infinite

- Good approximation for telephoto optics
- Also called "parallel projection": $(x, y, z) \rightarrow (x, y)$
- What's the projection matrix?

ction infinite

otics y, z) → (x, y

Orthographic projection

61 Source: N. Snavely

Perspective projection

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points
- Lines \rightarrow lines (collinearity is preserved) - But line through focal point projects to a point • Planes \rightarrow planes (or half-planes) - But plane through focal point projects to line

Projection properties

- Parallel lines converge at a vanishing point
 - Each direction in space has its own vanishing point
 - But lines parallel to the image plane remain parallel

a vanishing point ts own vanishing point e plane remain parallel

How can we model the geometry of a camera?

Three important coordinate systems:

- World coordinates
- *Camera* coordinates 2.
- Image coordinates З.

How do we project a given world point (x, y, z) to an image point?

Camera parameters

"The World"

World coordinates

Camera coordinates

Image coordinates

Source: N. Snavely Figure credit: Peter Hedman

- To project a point (x, y, z) in world coordinates into a camera • First transform (x, y, z) into camera coordinates
- Need to know
 - Camera position (in world coordinates)
 - Camera orientation (in world coordinates)
- Then project into the image plane to get *image (pixel)* coordinates
 - Need to know camera intrinsics

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principal point (c_x, c_y), pixel aspect size α
- \bullet

Projection equation

$$\mathbf{x} = \begin{bmatrix} sx \\ sy \\ s \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix}$$

- The projection matrix models the cumulative effect of all \bullet parameters
- Useful to decompose into a series of operations ullet $\Pi =$ $\mathbf{0}$ 0

- \bullet
 - especially intrinsics—varies from one book to another

Camera parameters

Extrinsics

 How do we get the camera to "canonical form"? points up, z-axis points backwards)

- (Center of projection at the origin, x-axis points right, y-axis

Step 1: Translate by -c

Extrinsics

 How do we get the camera to "canonical form"? points up, z-axis points backwards)

- (Center of projection at the origin, x-axis points right, y-axis

Step 1: Translate by -c

How do we represent translation as a matrix multiplication?

$$\mathbf{T} = \begin{bmatrix} \mathbf{I}_{3\times3} & -\mathbf{C} \\ 0 & 0 & 0 \end{bmatrix}$$

Extrinsics

 How do we get the camera to "canonical form"? - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by -c

Extrinsics

How do we get the camera to "canonical form"?
 – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by -c Step 2: Rotate by R

(with extra row/column of [0 0 0 1])

 \mathcal{U} : **aspect ratio** (1 unless pixels are not square)

S : **skew** (0 unless pixels are shaped like rhombi/parallelograms)

Source: N. Snavely (c_x, c_y) : principal point ((w/2,h/2) unless optical axis doesn't intersect projection plane at image ceriter)

Perspective projection $\begin{bmatrix} f & 0 & c_x \\ 0 & f & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

(converts from 3D rays in camera (intrinsics) coordinate system to pixel coordinates)

in general, $\mathbf{K} = \begin{bmatrix} f & s & c_x \\ 0 & \alpha f & c_y \\ 0 & 0 & 1 \end{bmatrix}$ (upper triangular matrix)

Typical intrinsics matrix $\mathbf{K} = \begin{bmatrix} f & 0 & c_x \\ 0 & f & c_y \\ 0 & 0 & 1 \end{bmatrix}$

- length) and a translation by (c_x, c_y) (principal point)
- Maps 3D rays to 2D pixels

2D affine transform corresponding to a scale by f (focal

Focal length

Can think of as "zoom"

24mm

200mm Also related to field of view

50mm

Changing focal length

Standard

Telephoto

http://petapixel.com/2013/01/11/how-focal-length-affects-your-subjects-apparent-weight-as-seen-with-a-cat/

Projection matrix

Projection matrix

Source: N. Snavely

Projection matrix

Distortion

No distortion

- Radial distortion of the image – Caused by imperfect lenses
 - edge of the lens

Pin cushion

Barrel

- Deviations are most noticeable for rays that pass through the

Source: N. Snavely

Modeling distortion

 $(\hat{x}, \hat{y}, \hat{z})$ Project to "normalized" image coordinates

Apply radial distortion

Apply focal length translate image center

To model lens distortion

$$\begin{array}{rcl} x'_n &=& \widehat{x}/\widehat{z} \\ y'_n &=& \widehat{y}/\widehat{z} \end{array}$$

$$r^{2} = x'_{n}^{2} + y'_{n}^{2}$$

$$x'_{d} = x'_{n}(1 + \kappa_{1}r^{2} + \kappa_{2}r^{4})$$

$$y'_{d} = y'_{n}(1 + \kappa_{1}r^{2} + \kappa_{2}r^{4})$$

$$\begin{aligned} x' &= fx'_d + x_c \\ y' &= fy'_d + y_c \end{aligned}$$

Use above projection operation instead of standard projection matrix multiplication

Source: N. Snavely

Correcting radial distortion

from <u>Helmut Dersch</u>

85

Next class: More geometry!

