Lecture 18: Fitting geometric models

Announcements

Section this week: project office hours • PS8: panorama stitching

Today

- Finding correspondences
- Fitting a homography
- RANSAC
- Triangulation

Panorama stitching (PS9)

Panorama stitching

Warp using homography

Panorama stitching

We'll estimate the homography from correspondences!

Finding correspondences with local features

Detection: Identify the interest points (a.k.a. 1) keypoints), the candidate points to match.

Description: Extract vector feature 2) descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views

Source: K. Grauman

What are good regions to match?

- change

"edge":

What are good regions to match?

How does the window change when you shift it? Shifting the window in any direction causes a big

no change along the edge direction

"corner": significant change in all directions

9 Source: S. Seitz, D. Frolova, D. Simakov, N. Snavely

Finding good key points to match

Compute difference-of-Gaussians filter (approx. to Laplacian).

Find local optima in space and scale using Laplacian pyramid.

We know how to detect good points Next question: How to match them?

Come up with a *descriptor* (feature vector) for each point, find similar descriptors between the two images

Feature descriptors

Source: N. Snavely

Simple idea: normalized image patch

We want invariance to rotation, lighting, and tiny spatial shifts.

Take 40x40 window around feature

- Find dominant orientation
- Rotate to horizontal
- Downsample to 8x8
- Intensity normalize the window by subtracting the mean, dividing by the standard deviation in the window

12 Source: N. Snavely, M. Brown

Scale Invariant Feature Transform (SIFT)

- Compute histograms of oriented gradients
- Take 16x16 square window around detected feature
- Compute edge orientation for each pixel
- Looks like a small, hand-crafted CNN lacksquare

Scale Invariant Feature Transform

Create the descriptor:

- Rotation invariance: rotate by "dominant" orientation
- Spatial invariance: spatial pool to 2x2
- Compute an orientation histogram for each cell
- (4 x 4) cells x 8 orientations = 128 dimensional descriptor

Keypoint descriptor

14 Source: N. Snavely, D. Lowe

SIFT invariances

Source: N. Snavely

Today

- Finding correspondences
 - Computing local features
 - Matching
- Fitting a homography
- RANSAC

How can we tell if two features match?

Feature matching

1. Define distance function that compares two descriptors 2. Test all the features in I_2 , find the closest one.

Given a feature in I_1 , how do we find the best match in I_2 ?

Source: N. Snavely

Finding matches

How do we know if two features match? – Simple approach: are they the nearest neighbor in L_2 distance, $||f_1 - f_2||$?

*I*₂

Source: N. Snavely

Finding matches

How do we know if two features match? Simple approach: are they the nearest neighbor in L_2 distance, $||f_1 - f_2||$? Can give good scores to ambiguous (incorrect) matches

Finding matches

Throw away matches that fail tests:

- Ratio test: this by far the best match? Compare best and 2nd-best matches. • • Ratio distance = $\|f_1 - f_2\| / \|f_1 - f_2'\|$

 - f_2 is best SSD match to f_1 in I_2
 - f_2 ' is 2nd best SSD match to f_1 in I_2
- **Forward-backward consistency**: f_1 should also be nearest neighbor of f_2 \bullet

Source: N. Snavely

21

Feature matching example

51 feature matches after ratio test

Source: N. Snavely

Feature matching example

58 feature matches after ratio test

Source: N. Snavely

Today

- Finding correspondences
 - Computing local features
 - Matching
- Fitting a homography
- RANSAC

From matches to a homography

25 Source: Torralba, Isola, Freeman

From matches to a homography

minimize $J(H) = \sum ||f_H(p_i) - p'_i||^2$ Ż

where $f_H(p_i) = Hp_i/(H_3^T p_i)$ applies homography

Remember: homogenous coordinates. H_3 is the third row of H

Option #1: Direct linear transform

Leaving homogeneous coordinates:

 $x_1' = \frac{ax_1 + by_1 + c}{gx_1 + hy_1 + i}$ $y_1' = \frac{dx_1 + ey_1 + f}{gx_1 + hy_1 + i}$ Re-arranging the terms:

- $gx_1x'_1 + hy_1x'_1 + ix_1' = ax_1 + by_1 + c$
- $gx_1y'_1 + hy_1y'_1 + ix_1' = dx_1 + ey_1 + f$

Option #1: Direct linear transform

 $gx_1y_1' + hy_1y_1' + ix_1' = dx_1 + ey_1 + f$

More rearranging: $gx_1x'_1 + hy_1x'$ $gx_1y_1' + hy_1y'$ In matrix form: $\begin{bmatrix} -x_1 & -y_1 & -1 & 0 & 0 \\ 0 & 0 & 0 & -x_1 & -y_1 \end{bmatrix}$

Can solve using Singular Value Decomposition (SVD).

Often used in practice for initial solutions!

 $gx_1x'_1 + hy_1x'_1 + ix_1' = ax_1 + by_1 + c$

$$_{1}^{+}$$
ix'₁ - ax₁ - by₁- c = 0
'_{1}+iy'_{1} - dx_{1} - ey_{1}- f = 0

Fast to solve (but not using "right" loss function). Uses an algebraic trick.

28

Option #2: Optimization

minimize $J(H) = \sum ||f_H(p_i) - p'_i||^2$ i

Optimization

minimize $J(H) = \sum_{i=1}^{n}$

- Can use gradient descent, just like when learning neural nets
- These problems are smaller scale than deep learning problems but have more local optima:
 - Use 2nd derivatives to improve optimization
 - Can use finite differences or autodiff
- Can use special-purpose nonlinear least squares methods.
 - Exploits structure in the problem for a sum-of-squares loss.

$$\sum_{i} ||f_{H}(p_{i}) - p_{i}'||^{2}$$

Problem: outliers

outliers

inliers

One idea: robust loss functions

minimize $J(H) = \sum_{i=1}^{N} \sum_{j=1}^{2} \rho(f_H(p_{ij}) - p'_{ij})$ i=1 j=1where $\rho(x)$ is a **robust** loss.

Special case: $\rho(x) = x^2$ is L2 loss (same as before)

Truncated quadratic: $\rho(x) = \min(x^2, \tau)$

Source: [Barron 2019, "A General and Adaptive Robust Loss Function"]

X

Handling outliers

- Can be hard to fit a robust loss, e.g., due to local minima
- Another idea: trial and error!
- Let's consider the problem of linear regression

Problem: Fit a line to these data points

Least squares fit

Counting inliers

Counting inliers

Inliers: 3

Source: N. Snavely

- Idea:
 - All the inliers will agree with each other on the solution; the (hopefully small) number of outliers will (hopefully) disagree with each other
 - RANSAC only has guarantees if there are < 50% outliers
 - "All good matches are alike; every bad match is bad in its own way."

– Tolstoy via Alyosha Efros

RANSAC

RANSAC: random sample consensus

- RANSAC loop (for N iterations):
 - Select four feature pairs (at random)
 - Compute homography H
 - Count inliers where $\|p_i' f_H(p_i)\| < \varepsilon$

Afterwards:

- Choose *H* with largest set of inliers Recompute H using only those inliers (often using high-quality nonlinear least squares) 42

Rather than homography H (8 numbers) fit y=ax+b (2 numbers a, b) to 2D pairs

- Pick 2 points
- Fit line
- Count inliers

- Pick 2 points
- Fit line
- Count inliers

 \bigcirc

- Pick 2 points
- Fit line
- Count inliers

 \bigcirc

- Pick 2 points
- Fit line
- Count inliers

 Use biggest set of inliers • Do least-square fit

Example: fitting a translation

Source: N. Snavely

Source: N. Snavely

Then compute average translation, using only inliers

Source: N. Snavely

Warping with a homography (PS8)

Source: N. Snavely

A similar geometric problem: triangulation

Given projection p_i of unknown 3D point X in two or more images (with known cameras P_i), find X

Triangulation

Given projection p_i of unknown 3D point X in two or more images (with known cameras P_i), find X Why is the calibration here important?

Triangulation

Rays in principle should intersect, but in practice usually don't exactly due to noise, numerical errors.

Triangulation – Geometry

Find shortest segment between viewing rays, set X to be the midpoint of the segment.

Find X minimizing $d(\mathbf{p}_1, \mathbf{P}_1 \mathbf{X})^2 + d(\mathbf{p}_2, \mathbf{P}_2 \mathbf{X})^2$ where d is distance in image space

Triangulation – Non-linear Optim.

Triangulation – Linear Optimization

Remember: this implies **PX_i & p_i** are proportional/scaled copies of each other

- This implies their cross product is **0**, since $a \times b = ||a|| ||b|| \sin(\theta).$ $p_i \times PX_i = 0$
- Handles the "divide by 0" issue we saw before.

- First: A better way to handle homogeneous coordinates in linear optimization
 - Recall: projection in homogeneous coordinates.
 - $p_i \equiv PX_i$

 $p_i = \lambda P X_i, \ \lambda \neq 0$

Triangulation – Linear Optimization $p_1 \equiv P_1 X \qquad p_1 \times P_1 X = 0 \qquad [p_{1x}]P_1 X = 0$ $p_2 \equiv P_2 X \qquad \Rightarrow \qquad p_2 \times P_2 X = 0 \qquad \Rightarrow \qquad [p_{2x}]P_2 X = 0$

 $[p_{1x}]P_1X = 0 \qquad ([p_{1x}]P_1)X = 0 \qquad \text{Two eqns per}$ $[p_{2x}]P_2X = 0 \qquad ([p_{2x}]P_2)X = 0 \qquad \text{Two eqns per}$ $([p_{2x}]P_2)X = 0 \qquad \text{Two eqns per}$

- Cross Prod. as matrix $a \times b = \begin{vmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{vmatrix} \begin{vmatrix} b_1 \\ b_2 \\ b_3 \end{vmatrix} = \begin{bmatrix} a_x \end{bmatrix} b$

Next time: Estimating 3D structure

• Given many images, how can we... 1. Figure out where they were all taken from? 2. Build a 3D model of the scene?

This is the **structure from motion** problem

- Input: images with pixels in correspondence
- Output
 - Structure: 3D location \mathbf{x}_i for each point p_i
 - **Motion:** camera parameters \mathbf{R}_i , \mathbf{t}_i possibly \mathbf{K}_i \bullet
- Objective function: minimize reprojection error

Structure from motion

 $p_{i,i} = (U_{i,i}, V_{i,i})$

Camera calibration & triangulation

- Suppose we know 3D points
 - And have matches between these points and an image
 - Computing camera parameters similar to homography estimation
- Suppose we have know camera parameters, each of which observes a point – We can solve for the 3D location
- Seems like a chicken-and-egg problem, but in SfM we can solve both at once

67

Source: N. Snavely

Next class: more 3D