Lecture 18: Fitting geometric models

Announcements

- Section this week: project office hours
- PS8: panorama stitching

Today

- Finding correspondences
- Fitting a homography
- RANSAC
- Triangulation

Panorama stitching (PS9)

Panorama stitching

Panorama stitching

Finding correspondences with local features

1) Detection: Identify the interest points (a.k.a. keypoints), the candidate points to match.
2) Description: Extract vector feature descriptor surrounding each interest point.

3) Matching: Determine correspondence

$$
\mathbf{x}_{2}^{\downarrow}=\left[x_{1}^{(2)}, \ldots, x_{d}^{(2)}\right]
$$ between descriptors in two views

What are good regions to match?

What are good regions to match?

- How does the window change when you shift it?
- Shifting the window in any direction causes a big change

"flat" region:
no change in all directions

"edge":
no change along the edge direction

"corner":
significant change in
all directions

Finding good key points to match

Compute difference-of-Gaussians filter (approx. to Laplacian).

Find local optima in space and scale using Laplacian pyramid.

Feature descriptors

We know how to detect good points
Next question: How to match them?

Come up with a descriptor (feature vector) for each point, find similar descriptors between the two images

Simple idea: normalized image patch

We want invariance to rotation, lighting, and tiny spatial shifts.

Take 40×40 window around feature

- Find dominant orientation
- Rotate to horizontal
- Downsample to 8×8
- Intensity normalize the window by subtracting the mean, dividing by the standard deviation in the window

Scale Invariant Feature Transform (SIFT)

- Compute histograms of oriented gradients
- Take 16×16 square window around detected feature
- Compute edge orientation for each pixel
- Looks like a small, hand-crafted CNN

Scale Invariant Feature Transform

Create the descriptor:

- Rotation invariance: rotate by "dominant" orientation
- Spatial invariance: spatial pool to 2×2
- Compute an orientation histogram for each cell
- (4×4) cells $\times 8$ orientations $=128$ dimensional descriptor

SIFT invariances

Today

- Finding correspondences
- Computing local features
- Matching
- Fitting a homography
- RANSAC

How can we tell if two features match?

Source: N. Snavely

Feature matching

Given a feature in I_{1}, how do we find the best match in I_{2} ?

1. Define distance function that compares two descriptors
2. Test all the features in I_{2}, find the closest one.

Finding matches

How do we know if two features match?

- Simple approach: are they the nearest neighbor in L_{2} distance, $\left\|f_{1}-f_{2}\right\|$?

I_{1}
1
I_{2}
19

Finding matches

How do we know if two features match?

- Simple approach: are they the nearest neighbor in L_{2} distance, $\left\|f_{1}-f_{2}\right\|$?
- Can give good scores to ambiguous (incorrect) matches

I_{1}

Finding matches

Throw away matches that fail tests:

- Ratio test: this by far the best match? Compare best and 2nd-best matches.
- Ratio distance $=\left\|f_{1}-f_{2}\right\| /\left\|f_{1}-f_{2}{ }^{\prime}\right\|$
- f_{2} is best SSD match to f_{1} in I_{2}
- $f_{2}{ }^{\prime}$ is $2^{\text {nd }}$ best SSD match to f_{1} in I_{2}
- Forward-backward consistency: f_{1} should also be nearest neighbor of f_{2}

l_{1}

1
21

Feature matching example

Feature matching example

58 feature matches after ratio test

Today

- Finding correspondences
- Computing local features
- Matching
- Fitting a homography
- RANSAC

From matches to a homography

$$
\begin{aligned}
& x_{1} \\
& y_{1} \\
& w_{1}
\end{aligned}=\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array} \cdot \begin{array}{|c}
x_{1} \\
y_{1} \\
1
\end{array}
$$

From matches to a homography

Remember: homogenous coordinates.
H_{3} is the third row of H

Option \#1: Direct linear transform

$$
\begin{aligned}
& \mathrm{x}_{1}^{\prime} \\
& \mathrm{y}_{1} \\
& \mathrm{w}_{1}
\end{aligned}=\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array} \cdot \begin{gathered}
\mathrm{x}_{1} \\
\mathrm{y}_{1} \\
1
\end{gathered}
$$

Leaving homogeneous coordinates:

$$
\begin{aligned}
& x_{1}^{\prime}=\frac{a x_{1}+b y_{1}+c}{g x_{1}+h y_{1}+i} \\
& y_{1}^{\prime}=\frac{d x_{1}+e y_{1}+f}{g x_{1}+h y_{1}+i}
\end{aligned}
$$

Re-arranging the terms:

$$
\begin{aligned}
& \mathrm{gx}_{1} \mathrm{x}^{\prime}{ }_{1}+\mathrm{hy}_{1} \mathrm{x}^{\prime}{ }_{1}+\mathrm{ix}{ }_{1}{ }^{\prime}=\mathrm{ax} \mathrm{x}_{1}+\mathrm{by}_{1}+\mathrm{c} \\
& \mathrm{gx}_{1} \mathrm{y}^{\prime}{ }_{1}+\mathrm{hy}_{1} \mathrm{y}^{\prime}{ }_{1}+\mathrm{ix}{ }_{1}{ }^{\prime}=\mathrm{dx} \mathrm{x}_{1}+\mathrm{ey} \mathrm{y}_{1}+\mathrm{f}
\end{aligned}
$$

Option \#1: Direct linear transform

$$
\begin{aligned}
& \text { gx } x_{1} \mathrm{x}_{1}{ }_{1}+\mathrm{hy}_{1} \mathrm{x}^{\prime}{ }_{1}+\mathrm{ix} \mathrm{x}^{\prime}{ }^{\prime}=\mathrm{ax} \mathrm{x}_{1}+\mathrm{by}{ }_{1}+c \\
& \mathrm{gx}_{1} \mathrm{y}^{\prime}{ }_{1}+\mathrm{hy}_{1} \mathrm{y}^{\prime}{ }_{1}+\mathrm{ix}{ }_{1}{ }^{\prime}=\mathrm{dx} \mathrm{x}_{1}+\mathrm{ey}{ }_{1}+\mathrm{f}
\end{aligned}
$$

More rearranging:

$$
\begin{aligned}
& \mathrm{gx}_{1} \mathrm{x}^{\prime}{ }_{1}+\mathrm{hy}_{1} \mathrm{x}^{\prime}{ }_{1}+\mathrm{ix}{ }^{\prime}{ }_{1}-\mathrm{ax} \mathrm{x}_{1}-\mathrm{by} \mathrm{y}_{1}-\mathrm{c}=0 \\
& \mathrm{gx}_{1} \mathrm{y}^{\prime}{ }_{1}+\mathrm{hy}_{1} \mathrm{y}^{\prime}{ }_{1}+\mathrm{iy}{ }_{1}{ }_{1}-\mathrm{dx} \mathrm{x}_{1}-\mathrm{ey} \mathrm{y}_{1}-\mathrm{f}=0
\end{aligned}
$$

In matrix form:

$$
\left[\begin{array}{ccccccccc}
-x_{1} & -y_{1} & -1 & 0 & 0 & 0 & x_{1} x_{1} & y_{1} x_{1}^{\prime}{ }_{1} & x^{\prime} \\
0 & 0 & 0 & -x_{1} & -y_{1} & -1 & x_{1} y_{1} y_{1} & y_{1} y_{1}{ }_{1} & y_{1}^{\prime}
\end{array}\right]\left[\begin{array}{l}
a \\
a_{1} \\
b \\
c \\
d \\
e \\
e \\
f \\
g \\
h \\
i
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Can solve using Singular Value Decomposition (SVD).

Option \#2: Optimization

minimize $\quad J(H)=\sum_{i}\left\|f_{H}\left(p_{i}\right)-p_{i}^{\prime}\right\|^{2}$

Optimization

$$
\text { minimize } \quad J(H)=\sum_{i}\left\|f_{H}\left(p_{i}\right)-p_{i}^{\prime}\right\|^{2}
$$

- Can use gradient descent, just like when learning neural nets
- These problems are smaller scale than deep learning problems but have more local optima:
- Use 2nd derivatives to improve optimization
- Can use finite differences or autodiff
- Can use special-purpose nonlinear least squares methods.
- Exploits structure in the problem for a sum-of-squares loss.

Problem: outliers

One idea: robust loss functions

minimize $\quad J(H)=\sum_{i=1}^{N} \sum_{j=1}^{2} \rho\left(f_{H}\left(p_{i j}\right)-p_{i j}^{\prime}\right)$
where $\rho(x)$ is a robust loss.
Special case: $\rho(x)=x^{2}$ is L2 loss (same as before)

Robust loss functions

Robust loss functions

Truncated quadratic: $\rho(x)=\min \left(x^{2}, \tau\right)$

Robust loss functions

Huber loss:

$$
\rho(x)= \begin{cases}\frac{1}{2} x^{2} & \text { if }|x| \leq \tau \\ \tau\left(|x|-\frac{1}{2} \tau\right), & \text { else }\end{cases}
$$

Robust loss functions

Source: [Barron 2019, "A General and Adaptive Robust Loss Function"]

Handling outliers

- Can be hard to fit a robust loss, e.g., due to local minima
- Another idea: trial and error!
- Let's consider the problem of linear regression

Least squares fit

Counting inliers

Counting inliers

Inliers: 3

Counting inliers

RANSAC

- Idea:
- All the inliers will agree with each other on the solution; the (hopefully small) number of outliers will (hopefully) disagree with each other
- RANSAC only has guarantees if there are $<50 \%$ outliers
- "All good matches are alike; every bad match is bad in its own way."
- Tolstoy via Alyosha Efros

RANSAC: random sample consensus

RANSAC loop (for N iterations):

- Select four feature pairs (at random)
- Compute homography H
- Count inliers where $\left\|p_{i}^{\prime}-f_{H}\left(p_{i}\right)\right\|<\varepsilon$

Afterwards:

- Choose \boldsymbol{H} with largest set of inliers
- Recompute \boldsymbol{H} using only those inliers (often using high-quality nonlinear least squares)

Simple example: fit a line

- Rather than homography H (8 numbers) fit $y=a x+b$ (2 numbers $a, b)$ to 2D pairs

Simple example: fit a line

- Pick 2 points
- Fit line
- Count inliers

Simple example: fit a line

- Pick 2 points
- Fit line
- Count inliers

Simple example: fit a line

- Pick 2 points
- Fit line
- Count inliers

Simple example: fit a line

- Pick 2 points
- Fit line
- Count inliers

Simple example: fit a line

- Use biggest set of inliers
- Do least-square fit

Example: fitting a translation

RAndom SAmple Consensus

Warping with a homography (PS8)

A similar geometric problem: triangulation

Given projection p_{i} of unknown 3D point \mathbf{X} in two or more images (with known cameras P_{i}), find X

Triangulation

Given projection p_{i} of unknown 3D point X in two or more images (with known cameras P_{i}), find X Why is the calibration here important?

Triangulation

Rays in principle should intersect, but in practice usually don't exactly due to noise, numerical errors.

Triangulation - Geometry

Find shortest segment between viewing rays, set X to be the midpoint of the segment.

Triangulation - Non-linear Optim.

Find X minimizing $d\left(p_{1}, P_{1} \boldsymbol{X}\right)^{2}+d\left(p_{2}, P_{2} \boldsymbol{X}\right)^{2}$ where d is distance in image space

Triangulation - Linear Optimization

First: A better way to handle homogeneous coordinates in linear optimization

Recall: projection in homogeneous coordinates.

$$
p_{i} \equiv P X_{i}
$$

Remember: this implies $\mathrm{PX}_{\mathrm{i}} \& \mathrm{p}_{\mathrm{i}}$ are proportional/scaled copies of each other

$$
p_{i}=\lambda P X_{i}, \lambda \neq 0
$$

This implies their cross product is 0 , since $a \times b=\|a\|\|b\| \sin (\theta)$.

$$
p_{i} \times P X_{i}=\mathbf{0}
$$

Handles the "divide by 0 " issue we saw before.

Triangulation - Linear Optimization

$$
\begin{aligned}
& p_{1} \equiv P_{1} X \\
& p_{2} \equiv P_{2} X
\end{aligned} \Rightarrow \quad p_{1} \times P_{1} X=\mathbf{0}, p_{2} \times P_{2} X=\mathbf{0} \Rightarrow\left[p_{1 x}\right] P_{1} X=\mathbf{0}
$$

Cross Prod. as matrix

$$
\boldsymbol{a} \times \boldsymbol{b}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\boldsymbol{a}_{x}\right] \boldsymbol{b}
$$

$$
\begin{aligned}
& {\left[p_{1 x}\right] P_{1} X=\mathbf{0}} \\
& {\left[p_{2 x}\right] P_{2} X=\mathbf{0}}
\end{aligned} \Rightarrow \begin{array}{ll}
\left(\left[p_{1 x}\right] P_{1}\right) X=\mathbf{0} \\
\left(\left[p_{2 x}\right] P_{2}\right) X=\mathbf{0}
\end{array} \Rightarrow \begin{aligned}
& \text { Two eqns per } \\
& \text { camera for } 3 \\
& \text { unknown in } \mathrm{X}
\end{aligned}
$$

Next time: Estimating 3D structure

- Given many images, how can we...

1. Figure out where they were all taken from?
2. Build a 3D model of the scene?

This is the structure from motion problem

Structure from motion

- Input: images with pixels in correspondence

$$
p_{i, j}=\left(u_{i, j}, v_{i, j}\right)
$$

- Output
- Structure: 3D location \mathbf{x}_{i} for each point p_{i}
- Motion: camera parameters $\mathbf{R}_{j}, \mathbf{t}_{j}$ possibly \mathbf{K}_{j}
- Objective function: minimize reprojection error

Camera calibration \& triangulation

- Suppose we know 3D points
- And have matches between these points and an image
- Computing camera parameters similar to homography estimation
- Suppose we have know camera parameters, each of which observes a point
- We can solve for the 3D location
- Seems like a chicken-and-egg problem, but in SfM we can solve both at once

Next class: more 3D

