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Lecture 18: Fitting geometric models



Announcements

• Section this week: project office hours 
• PS8: panorama stitching
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Today

• Finding correspondences 
• Fitting a homography 
• RANSAC 
• Triangulation

3



Panorama stitching (PS9)
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Panorama stitching
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Warp using 
homography



Panorama stitching
We’ll estimate the homography 

from correspondences!
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Finding correspondences with local features

1) Detection: Identify the interest points (a.k.a. 
keypoints), the candidate points to match. 

2) Description: Extract vector feature 
descriptor surrounding each interest point. 

3) Matching: Determine correspondence 
between descriptors in two views
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Source: K. Grauman
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What are good regions to match?



What are good regions to match?

“flat” region: 
no change in all 
directions

“edge”:   
no change along the 
edge direction

“corner”: 
significant change in 
all directions

• How does the window change when you shift it? 
• Shifting the window in any direction causes a big 

change

Source: S. Seitz, D. Frolova, D. Simakov, N. Snavely
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Finding good key points to match

Find local optima in space and 
scale using Laplacian pyramid.

Compute difference-of-Gaussians 
filter (approx. to Laplacian).
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Feature descriptors
We know how to detect good points 
Next question: How to match them? 

Come up with a descriptor (feature vector) for each 
point, find similar descriptors between the two 
images

?

Source: N. Snavely
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CSE 576: Computer Vision

Take 40x40 window around feature 
• Find dominant orientation 
• Rotate to horizontal 
• Downsample to 8x8 
• Intensity normalize the window by 

subtracting the mean, dividing by the 
standard deviation in the window

Simple idea: normalized image patch

8 pixels
40 pixels

Source: N. Snavely, M. Brown
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We want invariance to rotation, lighting, 
and tiny spatial shifts. 



• Compute histograms of oriented gradients 
• Take 16x16 square window around detected feature 
• Compute edge orientation for each pixel 
• Looks like a small, hand-crafted CNN

Scale Invariant Feature Transform (SIFT)

Source: N. Snavely, D. Lowe

0 2π

angle histogram
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Create the descriptor: 
• Rotation invariance: rotate by “dominant” orientation 
• Spatial invariance: spatial pool to 2x2 
• Compute an orientation histogram for each cell 
• (4 x 4) cells x 8 orientations = 128 dimensional descriptor 

Scale Invariant Feature Transform

Source: N. Snavely, D. Lowe
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SIFT invariances

Source: N. Snavely
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Today

• Finding correspondences 
• Computing local features 
• Matching 

• Fitting a homography 
• RANSAC
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How can we tell if two features match?

Source: N. Snavely
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Feature matching

Given a feature in I1, how do we find the best match in I2? 
1. Define distance function that compares two descriptors 
2. Test all the features in I2, find the closest one.

Source: N. Snavely
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Finding matches
How do we know if two features match? 

– Simple approach: are they the nearest neighbor in L2 distance, ||f1 - f2||?

I1 I2

f1 f2

Source: N. Snavely
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Finding matches
How do we know if two features match? 

– Simple approach: are they the nearest neighbor in L2 distance, ||f1 - f2||? 
– Can give good scores to ambiguous (incorrect) matches 

I1 I2

f1 f2

Source: N. Snavely
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f1 f2f2'

Finding matches
Throw away matches that fail tests: 

• Ratio test: this by far the best match? Compare best and 2nd-best matches. 
• Ratio distance = ||f1 - f2 || / || f1 - f2’ || 
• f2 is best SSD match to f1 in I2 
• f2’  is  2nd best SSD match to f1 in I2 

• Forward-backward consistency: f1  should also be nearest neighbor of f2

I1 I2 Source: N. Snavely21



Feature matching example

51 feature matches after ratio test

Source: N. Snavely
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Feature matching example

58 feature matches after ratio test

Source: N. Snavely
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Today

• Finding correspondences 
• Computing local features 
• Matching 
• Fitting a homography 
• RANSAC
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From matches to a homography

x1’

y1’
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(x1,y1)
(x’1,y’1)

Source: Torralba, Isola, Freeman
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From matches to a homography
Point in 1st image

J(H) =
X

i

||fH(pi)� p
0
i
||2

fH(pi) = Hpi/(H
T

3 pi)

Matched point in 2nd

where applies homography 
 

minimize

Remember: homogenous coordinates. 
 is the third row of H3 H



x1’

y1’
w1

=

x1

y1

1

a b c

d e f
g h i

.

x1’ =
ax1 + by1+c
gx1 + hy1+i

y1’ =
dx1 + ey1+f
gx1 + hy1+i

gx1x’1 + hy1x’1+ix1’ = ax1 + by1+c

gx1y’1 + hy1y’1+ix1’ = dx1 + ey1+f

Leaving homogeneous coordinates:

Re-arranging the terms:

Option #1: Direct linear transform

Source: Torralba, Freeman, Isola
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gx1x’1 + hy1x’1+ix1’ = ax1 + by1+c

gx1y’1 + hy1y’1+ix1’ = dx1 + ey1+f

More rearranging:
gx1x’1 + hy1x’1+ix’1 - ax1 - by1- c = 0
gx1y’1 + hy1y’1+iy’1 - dx1 - ey1- f = 0

-x1  -y1  -1  0    0    0    x1x’1   y1x’1    x’1 a 
b 
c 
d 
e 
f 
g 
h 
i

In matrix form:

 0    0    0  -x1  -y1  -1   x1y’1   y1y’1    y’1

0 
0=

Option #1: Direct linear transform

Fast to solve (but not using “right” loss function). Uses an algebraic trick.

Often used in practice for initial solutions!

Source: Torralba, Freeman, Isola

Can solve using Singular Value Decomposition (SVD).
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Option #2: Optimization

H
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J(H)

J(H) =
X

i

||fH(pi)� p
0
i
||2

H11 H12

minimize



Optimization
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J(H) =
X

i

||fH(pi)� p
0
i
||2minimize

• Can use gradient descent, just like when learning neural nets 

• These problems are smaller scale than deep learning problems but have 
more local optima: 
• Use 2nd derivatives to improve optimization 

• Can use finite differences or autodiff 

• Can use special-purpose nonlinear least squares methods. 

• Exploits structure in the problem for a sum-of-squares loss.



Problem: outliers
outliers

inliers
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Source: N. Snavely



One idea: robust loss functions
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minimize J(H) =
N

∑
i=1

2

∑
j=1

ρ( fH(pij) − p′ ij)

where  is a robust loss.ρ(x)

Special case:  is L2 loss (same as before)ρ(x) = x2



Robust loss functions
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ρ(x) = |x |L1 loss:



Robust loss functions
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ρ(x) = min(x2, τ)Truncated quadratic:



Robust loss functions
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Huber loss:

ρ(x) =
1
2 x2 if  |x | ≤ τ,

τ( |x | − 1
2 τ), else



Robust loss functions

36Source: [Barron 2019, “A General and Adaptive Robust Loss Function”]

x



Handling outliers
• Can be hard to fit a robust loss, e.g., due to local minima 
• Another idea: trial and error! 
• Let’s consider the problem of linear regression

Problem: Fit a line to these data points Least squares fit
37

Source: N. Snavely



Counting inliers

38 Source: N. Snavely



Counting inliers
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Inliers: 3
Source: N. Snavely
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Inliers: 20
Source: N. Snavely

Counting inliers



RANSAC

• Idea: 
– All the inliers will agree with each other on the 

solution; the (hopefully small) number of outliers 
will (hopefully) disagree with each other 
• RANSAC only has guarantees if there are < 50% outliers 

– “All good matches are alike; every bad match is bad 
in its own way.” 

    – Tolstoy via Alyosha Efros

Source: N. Snavely



RANSAC: random sample consensus

RANSAC loop (for N iterations): 
• Select four feature pairs (at random) 
• Compute homography H 
• Count inliers where ||pi’ - (pi)|| < ε 

Afterwards: 
• Choose H  with largest set of inliers 
• Recompute H using only those inliers (often 

using high-quality nonlinear least squares)

fH
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Source: Torralba, Freeman, Isola
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Simple example: fit a line

• Rather than homography H (8 numbers)  
fit y=ax+b (2 numbers a, b) to 2D pairs

Source: Torralba, Freeman, Isola
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Simple example: fit a line

• Pick 2 points 
• Fit line 
• Count inliers

3 inlier

Source: Torralba, Freeman, Isola
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Simple example: fit a line

• Pick 2 points 
• Fit line 
• Count inliers

4 inlier

Source: Torralba, Freeman, Isola
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Simple example: fit a line

• Pick 2 points 
• Fit line 
• Count inliers

9 inlier

Source: Torralba, Freeman, Isola
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Simple example: fit a line

• Pick 2 points 
• Fit line 
• Count inliers

8 inlier

Source: Torralba, Freeman, Isola
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Simple example: fit a line

• Use biggest set of inliers 
• Do least-square fit

Source: Torralba, Freeman, Isola



Example: fitting a translation

Source: N. Snavely



RAndom SAmple Consensus

Select one match at random, count inliers

Source: N. Snavely



RAndom SAmple Consensus

Select one match at random, count inliers

Source: N. Snavely



RAndom SAmple Consensus

Select one match at random, count inliers

Source: N. Snavely



RAndom SAmple Consensus

Select another match at random, count inliers

Source: N. Snavely



RAndom SAmple Consensus

Select another match at random, count inliers

Source: N. Snavely



RAndom SAmple Consensus

Choose the translation with the highest number of inliers

Source: N. Snavely

Then compute average translation, using only inliers



Warping with a homography (PS8)
1. Compute features using SIFT

2. Match features

3. Compute homography using RANSAC

56
Source: N. Snavely



A similar geometric problem: triangulation

Given projection pi of unknown 3D point X in two or 
more images (with known cameras Pi), find X

Source: D. Fouhey



Triangulation

p1 p2

X?

Given projection pi of unknown 3D point X in two or 
more images (with known cameras Pi), find X 

Why is the calibration here important?

Source: D. Fouhey



Triangulation
Rays in principle should intersect, but in practice 

usually don’t exactly due to noise, numerical errors.

p1 p2

X?

Source: D. Fouhey



Triangulation – Geometry

p1 p2

X

Find shortest segment between viewing rays, set X to 
be the midpoint of the segment.

Source: D. Fouhey



Triangulation – Non-linear Optim.

p1 p2

X

Find X minimizing 𝑑(𝒑1, P1𝑿)2 + 𝑑(𝒑2, P2𝑿)2

P1X P2X

Source: D. Fouhey

where  is distance in image space𝑑



Triangulation – Linear Optimization

p1 p2

X

P1X P2X

Source: D. Fouhey



First: A better way to handle homogeneous 
coordinates in linear optimization

𝒑𝒊 ≡ P𝑿𝒊

𝒑𝒊 = 𝜆P𝑿𝒊,  𝜆 ≠ 0

Remember: this implies PXi & pi are 
proportional/scaled copies of each other

𝒑𝒊 × P𝑿𝒊 = 𝟎

This implies their cross product is 0, since 
.a × b = ∥a∥∥b∥ sin(θ)

Source: D. Fouhey

Recall: projection in homogeneous coordinates.

Handles the “divide by 0” issue we saw before.



Triangulation – Linear Optimization
𝒑𝟏 ≡ P𝟏𝑿
𝒑𝟐 ≡ P𝟐𝑿

[𝒑𝟏𝒙]P𝟏𝑿 = 𝟎
[𝒑𝟐𝒙]P𝟐𝑿 = 𝟎

𝒑𝟏 × P𝟏𝑿 = 𝟎
𝒑𝟐 × P𝟐𝑿 = 𝟎

[𝒑𝟏𝒙]P𝟏𝑿 = 𝟎
[𝒑𝟐𝒙]P𝟐𝑿 = 𝟎

([𝒑𝟏𝒙]P𝟏)𝑿 = 𝟎
([𝒑𝟐𝒙]P𝟐)𝑿 = 𝟎

Two eqns per 
camera for 3 
unknown in X

𝒂 × 𝒃 =  
0 −𝑎3 𝑎2

𝑎3 0 −𝑎1

−𝑎2 𝑎1 0

𝑏1
𝑏2
𝑏3

= [𝒂𝑥]𝒃
Cross Prod. 
as matrix

Source: D. Fouhey



Next time: Estimating 3D structure
• Given many images, how can we… 

1. Figure out where they were all taken from? 
2. Build a 3D model of the scene? 

This is the structure from motion problem
65

Source: N. Snavely



Structure from motion

• Input: images with pixels in correspondence       pi,j  = (ui,j,vi,j)


• Output

• Structure: 3D location xi for each point pi

• Motion: camera parameters Rj , tj possibly Kj 

• Objective function: minimize reprojection error


Reconstruction (side) (top)

66
Source: N. Snavely



Camera calibration & triangulation

• Suppose we know 3D points

– And have matches between these points and an image 
– Computing camera parameters similar to homography 

estimation 

• Suppose we have know camera parameters, each of 
which observes a point

– We can solve for the 3D location 

• Seems like a chicken-and-egg problem, but in SfM we 
can solve both at once

67
Source: N. Snavely



Next class: more 3D


