Lecture 19: Estimating geometry

Slides mostly from N. Snavely

Announcements

- Project proposal submission now open
- office hours
- Thank you for answering questions on Piazza

This week's section: panorama stitching and project

Recall: triangulation

Given projection p_i of unknown 3D point X in two or more images (with known cameras P_i), find X

Triangulation

Given projection p_i of unknown 3D point X in two or more images (with known cameras P_i), find X Why is the calibration here important?

Triangulation

Rays in principle should intersect, but in practice usually don't exactly due to noise, numerical errors.

Triangulation – Geometry

Find shortest segment between viewing rays, set X to be the midpoint of the segment.

Find X minimizing $d(\mathbf{p}_1, \mathbf{P}_1 \mathbf{X})^2 + d(\mathbf{p}_2, \mathbf{P}_2 \mathbf{X})^2$ where d is distance in image space

Triangulation – Non-linear Optim.

Estimating 3D structure

• Given many images, how can we... 1. Figure out where they were all taken from? 2. Build a 3D model of the scene?

This is the **structure from motion** problem

- Structure from motion
- Multi-view stereo
- Stereo matching algorithms

Today

- Input: images with pixels in correspondence
- Output
 - Structure: 3D location \mathbf{x}_i for each point p_i
 - **Motion:** camera parameters \mathbf{R}_i , \mathbf{t}_i possibly \mathbf{K}_i \bullet
- Objective function: minimize reprojection error

Structure from motion

 $p_{i,i} = (U_{i,i}, V_{i,i})$

Camera calibration & triangulation

- Suppose we know 3D points
 - And have matches between these points and an image
 - Computing camera parameters similar to homography estimation
- Suppose we have know camera parameters, each of which observes a point – We can solve for the 3D location
- Seems like a chicken-and-egg problem, but in SfM we can solve both at once

11

Example: Photo Tourism

Feature detection

- Detect features using SIFT

Same process as with homography estimation

Feature matching

Match features between each pair of images

Feature matching

- Remove bad matches using ratio test.

• Other tricks: throw out matches that aren't on epipolar lines.

Image connectivity graph

Correspondence estimation

- Track each feature across the dataset.
- matches across several images.

Image 1

Image 2

• Link up pairwise matches to form connected components of

Image 3

Image 4

Correspondence estimation

A point track: the same 3D point projects to all 4 image positions.

Image 1

Image 2

Image 3

Image 4

• Minimize sum of squared reprojection errors:

$$g(\mathbf{X}, \mathbf{R}, \mathbf{T}) = \sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} \cdot \|\mathbf{F}\|_{\mathbf{Y}}$$
indicator variable

is point *i* visible in image *j*?

- Minimizing this function is called *bundle adjustment*. • Optimized using non-linear least squares
- Lots of outliers: use robust loss functions (e.g., Huber) and solve incrementally

Structure from motion

Incremental structure from motion

Incremental structure from motion

Incremental structure from motion

Photo Tourism Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski University of Washington Microsoft Research

SIGGRAPH 2006

. ------1. AN ANTING The second and the 1. ".p."2 de. A P. A A AA A P 23 BI

Name: brodo_1608736 Added by: brodo Date: November 21, 20...

R

Is SfM always uniquely solvable?

No. Consider the Necker cube:

Is SfM always uniquely solvable?

Two interpretations:

Image source: Wikipedia

Can also reconstruct from video

Applications: Visual Reality & Augmented Reality

Oculus

https://www.youtube.com/watch?v=FMtvrTGnP04 https://www.youtube.com/watch?v=KOG7yTz1iTA

Hololens

Application: Simultaneous localization and mapping (SLAM)

Scape: Building the 'AR Cloud': Part Three — 3D Maps, the Digital Scaffolding of the 21st Century https://medium.com/scape-technologies/building-the-ar-cloud-part-three-3dmaps-the-digital-scaffolding-of-the-21st-century-465fa55782dd

- Structure from motion
- **Multi-view stereo** lacksquare
- Stereo matching algorithms

Today

Can we estimate depth, now that we have pose?

reference view

neighbor views

Evaluate the likelihood of a particular depth for a particular reference patch:

Corresponding patches at depth guess in other views

Patch from reference View

Photometric error across different depths

reference view

neighbor views

Photometric error across different depths

reference view

neighbor views

Photometric error across different depths

Solve for a depth map over the whole reference view

Multiple-baseline stereo

pixel matching score

For short baselines, estimated depth will be less \bullet precise due to narrow triangulation

M. Okutomi and T. Kanade, "A Multiple-Baseline Stereo System," IEEE Trans. on Pattern Analysis and Machine Intelligence.

Depth is ambiguous from local information alone!

- Structure from motion
- Multi-view stereo
- Stereo matching algorithms

Recall: Stereo matching based on sum-of-squared distance

Left

Best matching disparity

Right

43

Window size

W = 3

W = 20

44

- - 1. Match quality
 - Want each pixel to find a good match in the other image lacksquare
 - 2. Smoothness
 - If two pixels are adjacent, they should (usually) move about the same amount

What defines a good stereo correspondence?

- Find disparity map d that minimizes an energy function E(d), where d is disparity.
- Simple pixel / window matching $E(d) = \sum C(x, y, d(x, y))$ $(x,y) \in I$

 $C(x, y, d(x, y)) \equiv$

Squared distance between windows I(x, y) and J(x + d(x,y), y)

Simple pixel / window matcl each pixel independently

$$d(x,y) = \arg$$

Simple pixel / window matching: choose the minimum of

g min C(x, y, d')d'

Greedy selection of best match

Better objective function

Want each pixel to find a good match in the other image

Stereo as energy minimization $E(d) = E_d(d) + \lambda E_s(d)$ match cost: $E_d(d) = \sum C(x, y, d(x, y))$ $(x,y) \in I$ smoothness cost: $E_s(d) = \sum V(d_p, d_q)$ $(p,q) \in \mathcal{E}$ 4-connected 8-connected neighborhood neighborhood

\mathcal{E} : set of neighboring pixels

Source: N. Snavely

50

Smoothness cost $E_s(d) = \sum V(d_p, d_q)$ $(p,q) \in \mathcal{E}$ How do we choose *V*? $V(d_p, d_q) = |d_p - d_q|$ L₁ distance

 $V(d_p, d_q) = \begin{cases} 0 & \text{if } d_p = d_q \\ 1 & \text{if } d_p \neq d_q \end{cases}$

"Potts model"

51

$E(d) = E_d$

- scanline using dynamic programming (DP)
- Basic idea: incrementally build a table of costs D one column at a time

Base case: D(0, y, i) = C(0, y, i)

Recurrence: D(x, y, i) = C(x, y, i) -

$$(d) + \lambda E_s(d)$$

Can minimize this independently per row

D(x, y, i) : minimum cost of solution such that d(x, y) = i

,
$$i=0,\ldots,L$$
 (L = max disparity)

+
$$\min_{j \in \{0,1,...,L\}} D(x-1,y,j) + \lambda |i-j|$$

• Finds "smooth", low-cost path through cost volume from left to right

• Can we apply this trick in 2D as well? $a_{x-1,y}$ x, y $u_{x,y-1}$ • No: $d_{x,y-1}$ and $d_{x-1,y}$ may depend on different values of $d_{x-1,y-1}$

Source: D. Huttenlocher

Stereo as a minimization problem $E(d) = E_d(d) + \lambda E_s(d)$

- The 2D problem has many local minima

 - Gradient descent doesn't work well
- And a large search space -*n* x *m* image w/ *k* disparities has *k*^{nm} possible solutions – Finding the global minimum is NP-hard in general
- Good approximations exist (see Szeliski textbook):
 - Graph cuts
 - Belief propagation

- Famous problem: doing inference in a Markov Random Field (MRF)

Better methods exist...

Greedy selection

Graph cuts model

Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, International Conference on Computer Vision, September 1999.

Ground truth

Right

[Zbontar & LeCun, 2015]

Deep learning + MRF refinement

CNN-based matching + refinement

Next lecture: Color, lighting, and shading