Lecture 23: Recent architectures

1 Transformer slides from S. Lazebnik

Announcements

- Mon. Dec. 11: 10:30am 1:30pm in FXB1109 • Mon. Dec. 11: 2:30pm - 4:30pm over Zoom • Tues. Dec. 12: 10:30am - 1:30pm in FXB1109

- In-person split in two halves (e.g., 10:30-12pm, 12pm -1:30pm), so you can leave for lunch if you want.
- Video submission option for those who can't make it (due on Dec. 11 at **noon**), with explanation for why you can't come.

• Neural fields • Transformers for vision

3D view synthesis

Input views

Create model

Render new views

What representation should we use?

[Source: Mildenhall et al., "NeRF", 2020]

Idea #1: Image-based rendering

Point cloud (reconstructed with SfM + multi-view stereo)

View from a different angle

[Riegler and Koltun, 2020]

Idea #1: Image-based rendering

Point cloud

To synthesize a new view, select colors from existing views using proxy geometry.

Proxy geometry (a mesh)

[Riegler and Koltun, 2020]

Idea #1: Image-based rendering

[Riegler and Koltun, 2020]

Idea #2: voxel representation

Images & poses

[Source: Sitzmann et al., "DeepVoxels", 2019]

Idea #2: voxel representation

Input views

Idea #2: voxel representation

Input views

Position Viewing direction $\rightarrow V[x, y, z, \theta, \phi] = (R, G, B, \sigma)$

Training: $V[x, y, z, \theta, \phi] \rightarrow (RGB\sigma)$

Idea #3: neural radiance field (NeRF)

States and the states of the second s

Input views

$\rightarrow F_{\Theta}(x, y, z, \theta, \phi) = (R, G, B, \sigma)$

• Represent using a **neural radiance field**.

• Function that maps a (x, y, z, θ , ϕ) to a color and density.

Typically parameterized as a multi-layer perceptron (MLP)

• Goal: find parameters Θ for MLP that explain the images

Idea #3: neural radiance field (NeRF)

3D scene

[Mildenhall*, Srinivasan*, Tanick*, et al., Neural radiance fields, 2020]

Viewpoints

Learning a NeRF

[Source: Mildenhall et al., "NeRF", 2020]

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t), \mathbf{d})$$

Ray: $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$ For color *c* and density σ .

Neural rendering

dt, where $T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))ds\right)$

[Source: Mildenhall et al., "NeRF", 2020]

Color for ray **r**

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t), \mathbf{d})$$

Ray:
$$\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$$
 For color *C* a

A point distance t along r, centered at

Neural rendering

dt, where $T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))ds\right)$

and density σ .

15 [Source: Mildenhall et al., "NeRF", 2020]

Color at 3D point $\mathbf{r}(t)$ Weight and direction d

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t),\mathbf{d})$$

Color for ray **r**

Ray: $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$ For color *c* and density σ .

Neural rendering

- dt, where $T(t) = \exp\left(-\int_{t_m}^{t} \sigma(\mathbf{r}(s))ds\right)$

Density at point $\mathbf{r}(t)$ $C(\mathbf{r}) = \int_{t}^{t_f} T(t) \sigma(\mathbf{r}(t)) \mathbf{c}(\mathbf{r}(t), \mathbf{d}) d$

Ray: $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$ For color *c* and density σ .

Neural rendering

Probability that ray hasn't been absorbed

$$dt$$
, where $T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))d\right)$

17 [Source: Mildenhall et al., "NeRF", 2020]

In practice: coarse-to-fine and other tricks.

Loss function

$\mathscr{L} = \sum \|C(\mathbf{r}) - C_{gt}(\mathbf{r})\|_2^2$ r∈.*R*

Minimize difference between predicted and observed colors.

[Source: Mildenhall et al., "NeRF", 2020]

Implementation details

Why is it good to be view-dependent?

(a) View 1

(b) View 2

(c) Radiance Distributions

[Source: Mildenhall et al., "NeRF", 2020]

Representing the inputs

Part States 👯 🎘 🍂 🕷 🥐 -🔹 🎘 🥙 🚎 🛷 🚔 😹 🏂 🗺 🚽 🕹 🕷 🛸 😹 着 😹 👘 🕬 🛞 🐼

Input views

- In theory, could just plug in 4 inputs x, y, z, θ, ϕ
- However, this leads to blurry results.
- Neural nets show a bias toward low frequency functions [Tancik et al., 2020]

$\rightarrow F_{\Theta}(x, y, z, \theta, \phi) = (R, G, B, \sigma)$

Fourier features

🐂 📫 😹 📽 🙈 🐽 🐹 💰 $F_{\Theta}(x, y, z, \theta, \phi) = (R, G, B, \sigma)$ 🕹 💸 🕷 🍖 🍖 🦛 💰 💰 Ka 🚱 🏂 🕷 🛸 🎼 👘 👘 🕵 🕵

Input views

• Use a **positional encoding**. Given a scalar *p*, compute:

 $\gamma(p) = (\sin(2^0 \pi p), \cos(2^0 \pi p), \cdots, \sin(2^{L-1} \pi p), \cos(2^{L-1} \pi p))$

 Plug in the coordinate to sinusoids at different frequencies (e.g. L = 10).

[Source: Mildenhall et al., "NeRF", 2020]

MLP architecture

 $\gamma(p) = \left(\sin\left(2^0\pi p\right), \cos\left(2^0\pi p\right)\right)$

$$(), \cdots, \sin\left(2^{L-1}\pi p\right), \cos\left(2^{L-1}\pi p\right))$$

[Source: Mildenhall et al., "NeRF", 2020]

Ground Truth

Complete Model

Results for a novel viewpoint

No View Dependence No Positional Encoding

24 [Source: Mildenhall et al., "NeRF", 2020]

Fourier features

(a) Coordinate-based MLP

(b) Image regression $(x,y) \rightarrow \text{RGB}$

- Neural nets have trouble learning high frequency functions
- This mapping explicitly represents different frequencies (forces net to pay more attention high frequencies)

See [Tancik et al., "Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains", 2020]

Results

[Mildenhall*, Srinivasan*,²⁶Tanick*, et al. 2020]

Results

[Mildenhall*, Srinivasan*,²⁷Tanick*, et al. 2020]

Results

[Mildenhall*, Srinivasan*,²⁸Tanick*, et al. 2020]

NeRF state-of-the-art

[Barron et al., "Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields. 2023]

Extension: internet photo collections

[Martin-Brualla, Radwan et al. "NeRF in the Wild", 2020]

Extension: internet photo collections

[Martin-Brualla, Radwan et al. "NeRF in the Wild", 2020]

BLOCHENERF

Vincent Casser² Matthew Tancik^{1*} Xinchen Yan² Ben Mildenhall³ Pratul Srinivasan³ Sabeek Pradhan² Jonathan T. Barron³ Henrik Kretzschmar² ¹UC Berkeley ²Waymo

*Work done as an intern at Waymo

³Google Research

Google

Lots of other applications

Neural field

[Xie et al., "Neural Fields in Visual Computing and Beyond", 2021]

• Neural fields Transformers for vision

Recall: Transformers

- Build whole model out of self-attention
- units or convolutions)

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, I. Polosukhin, <u>Attention is all you need</u>, NeurIPS 2017

Source: S. Lazebnik

Uses only point-wise processing and attention (no recurrent

Self-attention layer

- Query vectors: $Q = XW_{Q}$
- Key vectors: $K = XW_{K}$
- Value vectors: $V = XW_V$
- Similarities: scaled dot-product attention $E_{i,j} = \frac{\left(Q_i \cdot Kj\right)}{\sqrt{D}} \quad \text{Or } E = QK^T / \sqrt{D}$ (*p* is the dimensionality of the keys)
- Attn. weights: $A = \operatorname{softmax}(E, \dim = 1)$
- Output vectors:

$$Y_i = \sum_{j} A_{i,j} V_j \quad \mathsf{Or} \quad Y = AV$$

Adapted from J. Johnson and S. Lazebnik.

Multi-head attention

- Run h attention models in parallel on top of different linearly projected versions of Q, K, V; concatenate and linearly project the results
- Intuition: enables model to attend to different kinds of information at different positions

Source: S. Lazebnik

Transformer blocks

- A **Transformer** is a sequence of transformer blocks
 - Vaswani et al.: N=12 blocks, embedding dimension = 512, 6 attention heads
 - Add & Norm: residual connection followed by layer normalization
 - Feedforward: two linear layers with ReLUs in between, applied independently to each vector
- Attention is the only interaction between inputs!

Self-supervised learning in Natural Language Processing

- 1. Download A LOT of text from the internet
- 2. Train a giant transformer using a suitable pretext task
- 3. Fine-tune the transformer on desired NLP task

Model Alias	Org.	
ULMfit	fast.ai	<i>Universal Languag</i> Howard and Ruder
ELMo	AllenNLP	<i>Deep contextualize</i> Peters et al.
OpenAl GPT	OpenAl	<i>Improving Langua</i> Radford et al.
BERT	Google	<i>BERT: Pre-training Language Unders</i> Devlin et al.
XLM	Facebook	Cross-lingual Lang Lample and Conneau

Source: S. Lazebnik

Article Reference

ge Model Fine-tuning for Text Classification

ed word representations

ge Understanding by Generative Pre-Training

of Deep Bidirectional Transformers for tanding

guage Model Pretraining

Self-supervised language modeling with transformers

- 1. Download A LOT of text from the internet
- 2. Train a giant transformer using a suitable pretext task
- 3. Fine-tune the transformer on desired NLP task

Pre-training

J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, <u>BERT: Pre-training of Deep Bidirectional Transformers for Language</u> 40 Understanding, EMNLP 2018 Source: S. Lazebnik

Bidirectional Encoder Representations from Transformers (BERT)

Fine-Tuning

Recall: denoising autoencoder

Reconstructed image

41

[Vincent et al., 2008]

BERT: Pretext tasks

- Masked language model (MLM)
 - Randomly mask 15% of tokens in input sentences, goal is to \bullet reconstruct them using bidirectional context

Randomly mask 15% of tokens

Input

Source: S. Lazebnik

BERT: More detailed view

Trained on Wikipedia (2.5B words) + BookCorpus (800M words)

Source: S. Lazebnik

43 Image source

BERT: Evaluation

General Language Understanding Evaluation (GLUE) benchmark (gluebenchmark.com)

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Ave
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82

Source: S. Lazebnik

Image GPT

- levels (9 bits), dense attention
- For transfer learning, average-pool encoded features across all positions CIFAR10

Source: S. Lazebnik

Image resolution up to 64x64, color values quantized to 512

Figure 4. Comparison of auto-regressive pre-training with BERT pre-training using iGPT-L at an input resolution of $32^2 \times 3$. Blue bars display linear probe accuracy and orange bars display finetune accuracy. Bold colors show the performance boost from ensembling BERT masks. We see that auto-regressive models produce much better features than BERT models after pre-training, but BERT models catch up after fine-tuning.

M. Chen et al., <u>Generative pretraining from pixels</u>, ICML 2020

Image GPT – OpenAl

Source: S. Lazebnik

M. Chen et al., <u>Generative pretraining from pixels</u>, ICML 2020

Vision transformer (ViT)

- Split an image into patches, fee standard transformer encoder
 - With patches of 14x14 pixels, you need 16x16=256 patches to represent 224x224 images

A. Dosovitskiy et al. <u>An image is worth 16x16 words: Transformers for image recognition at scale</u>. ICLR₄2021 Source: S. Lazebnik

Split an image into patches, feed linearly projected patches into

Vision transformer (ViT)

A. Dosovitskiy et al. <u>An image is worth 16x16 words: Transformers for image recognition at scale</u>. ICLR₄2021 Source: S. Lazebnik

Swin Transformer: windowed attention

[Liu et al., "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"]

Vision transformer (ViT)

A. Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 50 2021

Application: self-supervised learning with masked autoencoders

Source: S. Lazebnik

[Kaiming He et al., "Masked Autoencoders Are Scalable Vision Learners", 2021]

Application: self-supervised learning

[Kaiming He et al., "Masked Autoencoders Are Scalable Vision Learners", 2021]

Application: self-supervised learning

[Kaiming He et al., "Masked Autoencoders Are Scalable Vision Learners", 2021]

Application: video

Joint Space-Time Attention (ST)

Divided Space-Time Attention (T+S)

Application: video self-supervised learning

Source: [Feichtenhofer et al., "Masked Autoencoders As Spatiotemporal Learners", 2022]

Application: multimodal models

[Arsha Nagrani et al, "Attention Bottlenecks for Multimodal Fusion", 2021]

Detection Transformer (DETR) – Facebook Al

Hybrid of CNN and transformer, aimed at standard recognition task

N. Carion et al., End-to-end object detection with transformers, ECCV 2020

Source: S. Lazebnik

CNNs vs. Transformer performance: pretty similar

Improvements	Top-1	Δ	
ResNet-200	79.0		
+ Cosine LR Decay	79.3	+0.3	
+ Increase training epochs	78.8 †	-0.5	
+ EMA of weights	79.1	+0.3	
+ Label Smoothing	80.4	+1.3	
+ Stochastic Depth	80.6	+0.2	
+ RandAugment	81.0	+0.4	
+ Dropout on FC	80.7 [‡]	-0.3	
+ Decrease weight decay	82.2	+1.5	
+ Squeeze-and-Excitation	82.9	+0.7	
+ ResNet-D	83.4	+0.5	

[Irwan Bello et al. "Revisiting ResNets: Improved Training and Scaling Strategies", 2021]

Improving CNNs

[Liu et al. "A ConvNet for the 2020s", 2022]

Also: [Smith et al., ConvNets Match Vision] Transformers at Scale, 2023]

Next class: Bias and ethics