Lecture 25: Recent directions in motion estimation

What can we learn from motion?

"Common Fate"

Wehrtheimer (1938)

We could try learning it from single images...

input

...but the video gives us these for free!

SimCLR augmentations (Chen et al., 2020)

Correspondence in computer vision

optical flow

segment tracking

pose tracking

Correspondence in computer vision

Each task needs specialized data and model.

optical flow Dense but short-range

segment tracking

pose tracking

Long-range but sparse

Space-Time Correspondence as a Contrastive Random Walk

Allan Jabri

NeurIPS 2020 (Oral)

Andrew Owens

Alexei Efros

Funding: NSF and Soros Fellowship

Toward "universal" methods for correspondence

Representation learning for correspondence

Supervised learning for tracking

Supervised Learning

Latent views

Palindromes

Self-supervised Learning

t

Video as a Graph

Pixels I_t

Nodes

Representation

 \mathbf{q}_t

Video as a Graph

 \mathbf{q}_t

 \mathbf{q}_{t+1}

 $A_{ij} = \frac{e^{d_{\phi}(q_t^i, q_{t+1}^j)/\tau}}{\sum_l e^{d_{\phi}(q_t^i, q_{t+1}^l)/\tau}}$ $= P(X_{t+1} = j | X_t = i)$

where $d_{\phi}(x, y) = \phi(x)^{\dagger} \phi(y)$

 X_t is the position of walker at time t

Learn representation ϕ = Fit transition probabilities \bar{A}_t^{t+k}

One Step

Maximize

$P(X_{t+1} = target | X_t = query)$

One Step

Chaining Correspondences

k-step Transition Matrix

target

Fitting \bar{A}_t^{t+k} provides supervision for A_t^{t+1} , A_{t+1}^{t+2} ..., A_{t+k-1}^{t+k}

Chaining Correspondences

target

A single target supervises chains of learning problems

Supervised → Self-Supervised

See also [Wang, Jabri, Efros, "Learning correspondence from the cycle-consistency of time", 2019]

Train on Palindromes $\mathcal{L}_{cyc}^{k} = \operatorname{tr}(\log(\bar{A}_{t}^{t+k}\bar{A}_{t+k}^{t}))$

Image w/ query

Transition to future frame

Higher-level Correspondence?

Edge Dropout

t

t + k

Force alternate, **context** paths

No Edge Dropout

Edge Dropout p = 0.1

Evaluation: Using ϕ for Label Propagation

Object Propagation 1-4 Objects

Semantic Part Propagation 20 Parts

Pose Propagation 15 Keypoints

DAVIS Benchmark

VIP Benchmark

JHMDB Benchmark

Qualitative Results: Video Object Propagation (DAVIS)

Effect of Edge Dropout

PCA Feature Visualization

Image

No Edge Dropout

0.1

Can we track pixels?

Example source: Ce Liu

Optical flow

Can we track pixels?

large attention matrix $HW \times HW$ \downarrow $A = \operatorname{softmax} (Q_t Q_{t+1}^{\top}) = P(X_{t+1}|X_t)$

$$\bar{A}_{t}^{t+k} = \prod_{i=0}^{k-1} A_{t+i}^{t+i+1}$$

$$i = 0$$

$$i =$$

Learning Pixel Trajectories with Multiscale Contrastive Random Walks

Zhangxing Bian

Allan Jabri

Andrew Owens

Alexei Efros

Funding: TRI, Cisco, and Berkeley Deep Drive

optical flow = expected change in position under random walk

recenter walk and repeat using higher-res features

Multiscale walk loss: $\mathcal{L}_{\text{msCRW}} = -\sum_{l=1}^{L} \text{tr}(\log(\bar{A}_{t,t+k}^{l}\bar{A}_{t+k,t}^{l}))$

Smoothness Regularization

(Jonschkowski et al., 2020):

$$\mathcal{L}_{ ext{smooth}} = \mathbb{E}_p \sum_{d \in \{x, y\}} \exp(-\lambda_c I_d(p)) |rac{\partial^2 \mathbf{f}_s}{\partial t}$$

Network backbone from PWC-Net (Sun et al., 2017).

Ground truth

Ground Truth Ours

Contrastive random walk + smoothness

......

Optical flow

Ground truth

After adding flow regression module + occlusion handling.

Implementation follows <mark>UFlow (Jonsc</mark>hkowski et al., 2020)

Ground Truth (nonparametric)

Non-parametric (Ou Ours + regression

Toward a unified model

Label Propagation

Ground Truth

Non-parametric (Ours)

MS-CRW (Ours)

Pose and Segment Tracking

Sound Localization by Self-Supervised Time Delay Estimation

David F. Fouhey

ECCV 2022

Andrew Owens

Interaural time difference cues

Interaural Correspondence

Visual correspondence

Vondrick et al., 2018 Wang et al., 2019 Jabri et al., 2020

Interaural Correspondence

Objective: find a time delay τ that maximizes **generalized cross-correlation**:

Time

[Knapp and Carter, 1976]

Cycle-Consistency as Supervision

Jabri et al., 2020

Wang et al., 2019

Learning Interaural Correspondence

Interaural contrastive random walk (StereoCRW)

Learning Interaural Correspondence

Interaural contrastive random walk (StereoCRW)

Transition probability from sample *s* in x_i to sample *t* in x_j :

$$A_{ij}(s,t) = \frac{\exp(\mathbf{h}_i(s) \cdot \mathbf{h}_j(t)/c)}{\sum_{k=1}^n \exp(\mathbf{h}_i(s) \cdot \mathbf{h}_j(k)/c)}$$

Maximize the return probability of a walk moves between channels:

 $\operatorname{tr}(\log(A_{12}A_{21}))$

Application to in-the-wild phone recordings

Self-recorded video using iPhone 12

iPhone 12 video from Flickr

Tracking

Lots of different formulations...

Other formulations of motion estimation

- Point tracking
- Object tracking
- Unsupervised optical flow

Some challenges in tracking

- Track scene structures over long periods of time
- Deal with occlusion and disocclusion
- Often framed in terms of tracking objects
- Keep instances distinct

Sparse feature tracking

[Shi & Tomasi, "Good Features to Track", 1994]

- Detect sparse features (like Harris corners)
- Compute a descriptor at each one
- Match in the next frame

Semi-dense tracking

[Sand & Teller, "Particle Video", 2006]

[Rubinstein et al., "Towards Longer Long-Range Motion Trajectories", 2012]

Association problem

[Rubinstein et al., "Towards Longer Long-Range Motion Trajectories", 2012]

Persistent independent particles

[Harley et al., "Particle Video Revisited", 2022]

Persistent independent particles

Other formulations of motion estimation

- Point tracking
- Object tracking
- Unsupervised optical flow

Tracking as repeated detection

- Detect an objects at time t
- Update the detector (optional)
- Detect objects at t+1 and match them

[Ramanan et al., "Strike a Pose: Tracking People by Finding Stylized Poses", 2005]

Tracking objects

Representative recent example: [Zhou et al., "Tracking objects as points", 2020]

Tracking objects as points

[Zhou et al., "Tracking objects as points", 2020]

Inputs and outputs

"Recurrent" predictions

Image $I^{(t)}$

Detections $\hat{Y}^{(t)}$

Size $\hat{S}^{(t)}$

Offset $\hat{O}^{(t)}$

Learning to associate objects

During training:

- Randomly jitter detections from previous frames to simulate prediction errors
- Add false positives near the ground truth. • Choose "previous" frame from {-2, -1, 0, 1, 2} frames away.
- During inference:
- Use a greedy association
- No nearby match? Spawn a new tracklet

Other formulations of motion estimation

- Point tracking
- Object tracking
- Unsupervised optical flow

Problem: hard to get flow supervision

KITTI dataset [Geiger et al.]

Unsupervised optical flow

$$(x, y)$$
displacement = (u, v)
 $I(x, y, t-1)$

$$(x + u, y + v)$$

 $I(x, y, t)$

Recall: minimize matching error + smoothness [Horn and Schunck 1981]

$$\sum_{x,y} [I(x,y,t-1) - I(u(x),v(y),t)]^2 + \sum_{p} \sum_{p' \in \mathcal{N}} (u(p) - u(p'))^2 + (v(p) - v(p'))^2$$

$$E_d(u,v) \text{ match cost} \qquad E_s(u,v) \text{ smoothness}$$

Solution we saw before: optimize using nonlinear least squares.

Unsupervised optical flow

Recall: minimize matching error + smoothness [Horn and Schunck 1981]

$$\sum_{x,y} [I(x,y,t-1) - I(u(x),v(y),t)]^2 + \sum_{p} \sum_{p' \in \mathcal{N}} (u(p) - u(p'))^2 + (v(p) - v(p'))^2$$

= $E_d(u,v)$ match cost = $E_s(u,v)$ smoothness

Estimate with neural net instead:

$$\begin{bmatrix} u(p) \\ v(p) \end{bmatrix} = f(I_t, I_{t+1}, p; \theta)$$

Why might this work better?

What Matters in Unsupervised Optical Flow

Rico Jonschkowski^{1,2}, Austin Stone^{1,2}, Jonathan T. Barron², Ariel Gordon^{1,2}, Kurt Konolige^{1,2}, and Anelia Angelova^{1,2}

¹Robotics at Google and ²Google AI

[Johnschkowski et al., "What Matters in Unsupervised Optical Flow", 2020]

An optical flow network

Learning with photometric cost + smoothness prior

Create a loss that encourages the following. The flow you generate should have the following properties:

- 1. Matched pixels should have similar color.
- 2. Should have spatial smoothness.
- 3. Special handling for pixel that don't have a match (e.g. occlusions)

Qualitative results

-Occlusion

-Self-supervision

-Smoothness