
Lecture 7: Neural networks

1

• Discussion this week: machine learning
• Reading:
- Szeliski 5.3
- Goodfellow Deep Feedforward Networks

• Start thinking about project
• PS2 due today – submit to gradescope and canvas

2

• Brief history of neural networks
• Computation in neural networks
• Multi-layer perceptrons (for PS4)
• Estimating gradients (to be continued next class).

3

Today

0 0

1 1

0 1

6

Limitations to linear classifiers

+-

0 1

1 0

XOR

+ -

7

Limitations to linear classifiers

+-

+ -

Wrong! Wrong!

0 0

1 1

0 1

0 1

1 0

XOR

8

Limitations to linear classifiers

+-

+ -

Wrong!

Wrong!

0 0

1 1

0 1

0 1

1 0

XOR

9

Goal: Non-linear decision boundary

+-

+ -

0 0

1 1

0 1

0 1

1 0

XOR

Perceptron

• In 1957 Frank Rosenblatt invented the perceptron
• Computers at the time were too slow to run the perceptron, so Rosenblatt

built a special purpose machine with adjustable resistors
• New York Times Reported: “The Navy revealed the embryo of an electronic

computer that it expects will be able to walk, talk, see, write, reproduce itself
and be conscious of its existence”

Minsky and Papert, Perceptrons, 1972

11
Source: Isola, Torralba, Freeman

time

enthusiasm
Perceptrons,
1958

Minsky and Papert,
1972

12
Based on slide by: Isola, Torralba, Freeman

Parallel Distributed Processing (PDP), 1986

13
Source: Isola, Torralba, Freeman

time

enthusiasm
Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

14
Source: Isola, Torralba, Freeman

LeCun convolutional neural networks

http://yann.lecun.com/exdb/lenet/index.html
Demos:

15
Source: Isola, Torralba, Freeman

http://yann.lecun.com/exdb/lenet/index.html

16
Source: Isola, Torralba, Freeman

http://pub.clement.farabet.net/ecvw09.pdf

Neural networks to
recognize
handwritten digits
and human faces?
yes

Neural networks for
tougher problems?
not really

17
Source: Isola, Torralba, Freeman

http://pub.clement.farabet.net/ecvw09.pdf

Machine learning circa 2000

• Neural Information Processing Systems (NeurIPS), is a top
conference on machine learning.

• For the 2000 conference:
– title words predictive of paper acceptance: “Belief Propagation”

and “Gaussian”.

– title words predictive of paper rejection: “Neural” and “Network”.

18
Source: Isola, Torralba, Freeman

time

enthusiasm
Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

Neural network winter,
2000

19
Source: Isola, Torralba, Freeman

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

“AlexNet”

Source: Isola, Torralba, Freeman

Got all the “pieces” right, e.g.,
• Trained on ImageNet
• 8 layer architecture (for reference: today we have architectures with 100+ layers)
• Allowed for multi-GP training

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

22

Source: Isola, Torralba, Freeman

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

23

Source: Isola, Torralba, Freeman

time

enthusiasm
Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

Neural net winter,
2000

Krizhevsky,
Sutskever,
Hinton, 2012

28 years 28 years

25
Source: Isola, Torralba, Freeman

?

time

enthusiasm
Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000

Krizhevsky,
Sutskever,
Hinton, 2012

28 years 28 years

What comes next?

26
Source: Isola, Torralba, Freeman

27 Image source: Khan academy

Inspiration: Neurons

https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/the-synapse

[Serre, 2014]28

Inspiration: Hierarchical Representations

Source: Isola, Torralba, Freeman

Best to treat as inspiration. The
neural nets we’ll talk about aren’t
very biologically plausible.

Object recognition

Is dog?
Neural Network

Pixel 1

Pixel 2

Dog

Not dog

Pixel 1

Pi
xe

l 2

Input Space

Fur

Pa
w

Feature Space

Goal: automatically learn a function that maps data from the input space to a
feature space, i.e., "feature learning”, rather than use hand-crafted features

f(x)

Computation in a neural net

35Adapted from: Isola, Torralba, Freeman

Lets say we have some 1D input that we want to convert to some new feature space:

Input
representation

Output
representation

Neuron
(a.k.a unit)

𝑤!"

𝑦!

𝑥! 𝑦! =	$
"

𝑤"!𝑥"

weights
Linear layer

Computation in a neural net

36Adapted from: Isola, Torralba, Freeman

Lets say we have some 1D input that we want to convert to some new feature space:

Input
representation

Output
representation

Neuron
(a.k.a unit)

𝑤!"

𝑦!

𝑥! 𝑦! =	$
"

𝑤"!𝑥"

weights
Linear layer

bias

𝑏"

+	𝑏!

Computation in a neural net – Matrix Multiplication

37

𝑦! =	$
"

𝑤"!𝑥" +	𝑏!

𝑦! = 𝒙#𝒘! + 𝑏!

!
𝒊

𝒘𝒊𝒋𝒙𝒊 = 𝒙 % 𝒘𝒋 = 𝒙#𝒘$

Vector of
all input

units

Vector of
weights

𝒙𝟏 	 𝒙𝟐	… 𝒙𝒏

𝒘𝟏
𝒘𝟐…
𝒘𝒏

+	𝒃𝒋 = 𝒙𝟏 	 𝒙𝟐	… 𝒙𝒏	 𝟏

𝒘𝟏
𝒘𝟐…
𝒘𝒏
𝒃𝒋

Example: Linear Regression

Input
representation

Output
representation

Linear layer

38Adapted from: Isola, Torralba, Freeman

𝑥 𝑤 𝑦

𝑏

Computation in a neural net – Full Layer

Input
representation

Output
representation

Linear layer

39Adapted from: Isola, Torralba, Freeman

𝑥 𝑤"

𝑦!𝑏"

𝑦"
𝑦#𝑦$

…

𝑦 = 𝑊𝑥 + 𝑏

𝑤$$ ⋯ 𝑤$%
⋮ ⋱ ⋮
𝑤!$ ⋯ 𝑤!%

𝑦
parameters of the model:𝜽 = {𝑾, 𝒃}

𝑥!
𝑥"…
𝑥#

+
𝑏!
𝑏"…
𝑏$

=

𝑦!
𝑦"…
𝑦$

Computation in a neural net – Full Layer

Input
representation

Output
representation

Linear layer

40Adapted from: Isola, Torralba, Freeman

𝑥 𝑤"

𝑦!𝑏"

𝑦"
𝑦#𝑦$

…

𝑦 = 𝑊𝑥 + 𝑏
𝑤%% ⋯ 𝑤$&
⋮ ⋱ ⋮
𝑤$% ⋯ 𝑤$&

	
𝑏%
⋮
𝑏$

𝑦

𝑥!
𝑥"…
𝑥#
1

=

𝑦!
𝑦"…
𝑦$

Can again simplify notation by
appending a 1 to 𝐱

Full layer

Computation in a neural net – Recap

4141

Input
representation

Output
representation

𝑥 𝑦

We can now transform our input representation vector into some output
representation vector using a bunch of linear combinations of the input:

𝑧
We can repeat this as
many times as we want!

What is the problem with this idea?

Adapted from: Isola, Torralba, Freeman

𝐖!𝐱 𝐖"𝐖!𝐱 𝐖%𝐖"𝐖!𝐱𝐱

Can be expressed as single linear layer!

,
'

𝐖' 𝐱 = 𝐖
̂
𝐱

Limited power: can’t solve XOR :(

Pointwise
Non-linearity

Solution: simple nonlinearity

Adapted from: Isola, Torralba, Freeman

Input
representation

Output
representation

Linear layer

𝑥 𝑤"

𝑏" 𝑦 𝑔(𝑦)

Example: linear classification with a perceptron

44 Source: Isola, Torralba, Freeman

Example: linear classification with a perceptron

45 Source: Isola, Torralba, Freeman

Example: linear classification with a perceptron

46 Source: Isola, Torralba, Freeman

“when y is greater than 0, set all
pixel values to 1 (green),
otherwise, set all pixel values to 0
(red)”

Example: linear classification with a perceptron

47 Source: Isola, Torralba, Freeman

“when y is greater than 0, set all
pixel values to 1 (green),
otherwise, set all pixel values to 0
(red)”

Computation in a neural net - nonlinearity

Adapted from: Isola, Torralba, Freeman

Input
representation

Linear layer

𝑥 𝑤"

𝑏" 𝑦 𝑔(𝑦)

Can’t use with gradient descent, &
&'
𝑔 = 0

Output
representation

Computation in a neural net - nonlinearity

Adapted from: Isola, Torralba, Freeman

Input
representation

Linear layer

𝑥 𝑤"

𝑏" 𝑦 𝑔(𝑦)

Sigmoid

Output
representation

Sigmoid• Bounded between [0,1]

• Saturation for large +/- inputs

• Gradients go to zero

• Better in practice to use: tanh(𝑦)
= 2𝑔(𝑦) − 1

Computation in a neural net - nonlinearity

50 Adapted from: Isola, Torralba, Freeman

Rectified linear unit (ReLU)• Unbounded output (on positive side)

• Efficient to implement:

• Also seems to help convergence (6x
speedup vs. tanh in [Krizhevsky et al.
2012])

• Drawback: if strongly in negative
region, unit is dead forever (no gradient).

• Default choice: widely used in current
models!

Computation in a neural net — nonlinearity

53 Source: Isola, Torralba, Freeman

Leaky ReLU
• where α is small (e.g., 0.02)

• Efficient to implement:

• Has non-zero gradients everywhere (unlike
ReLU)

Computation in a neural net — nonlinearity

54 Source: Isola, Torralba, Freeman

Output
representation

Intermediate
representation

Input
representation

Stacking layers

56 Adapted from: Isola, Torralba, Freeman

𝐡	= “hidden units”

Input
representation

Output
representation

Connectivity patterns

Fully connected layer Locally connected layer
(Sparse W)

Input
representation

Output
representation

57 Source: Isola, Torralba, Freeman

Input
representation

Intermediate
representation

Stacking layers

Output
representation

58 Source: Isola, Torralba, Freeman

ReLU

𝒉 = 𝑔(𝑾!𝒙 + 𝒃!) 𝒚 = 𝑔(𝑾"𝒉 + 𝒃")
𝜃 = {𝑾!, … ,𝑾# , 𝒃!, … , 𝒃#}

𝒙

𝑾!

𝒃!

𝑾"

𝒃"

𝒉

𝒚

Input
representation

Intermediate
representation

Stacking layers

Output
representation

59 Source: Isola, Torralba, Freeman

ReLU

𝒉 = 𝑔(𝑾!𝒙 + 𝒃!) 𝒚 = 𝑔(𝑾"𝒉 + 𝒃")
𝜃 = {𝑾!, … ,𝑾# , 𝒃!, … , 𝒃#}

𝒙

𝑾!

𝒃!

𝑾"

𝒃"

𝒉

𝒚 positive

negative

Input
representation

Intermediate
representation

Stacking layers

Output
representation

positive

negative

60 Source: Isola, Torralba, Freeman

ReLU

𝒉 = 𝑔(𝑾!𝒙 + 𝒃!) 𝒚 = 𝑔(𝑾"𝒉 + 𝒃")
𝜃 = {𝑾!, … ,𝑾# , 𝒃!, … , 𝒃#}

𝒙

𝑾!

𝒃!

𝑾"

𝒃"

𝒉

𝒚

Input
representation

Intermediate
representation

Stacking layers

Output
representation

positive

negative

Source: Isola, Torralba, Freeman

ReLU

𝒉 = 𝑔(𝑾!𝒙 + 𝒃!) 𝒚 = 𝑔(𝑾"𝒉 + 𝒃")
𝜃 = {𝑾!, … ,𝑾# , 𝒃!, … , 𝒃#}

𝒙

𝑾!

𝒃!

𝑾"

𝒃"

𝒉

𝒚

Input
representation

Intermediate
representation

Stacking layers

Output
representation

positive

negative

62 Source: Isola, Torralba, Freeman

ReLU

𝒉 = 𝑔(𝑾!𝒙 + 𝒃!) 𝒚 = 𝑔(𝑾"𝒉 + 𝒃")
𝜃 = {𝑾!, … ,𝑾# , 𝒃!, … , 𝒃#}

𝒙

𝑾!

𝒃!

𝑾"

𝒃"

𝒉

𝒚

Input
representation

Intermediate
representation

Stacking layers

Output
representation

positive

negative

63 Source: Isola, Torralba, Freeman

ReLU

𝒉 = 𝑔(𝑾!𝒙 + 𝒃!) 𝒚 = 𝑔(𝑾"𝒉 + 𝒃")
𝜃 = {𝑾!, … ,𝑾# , 𝒃!, … , 𝒃#}

𝒙

𝑾!

𝒃!

𝑾"

𝒃"

𝒉

𝒚

Stacking layers - What’s actually happening?

64 Source: Isola, Torralba, Freeman

Low level features:
e.g., edge, texture, …

higher level features:
e.g., shape

even higher level features:
e.g., “paw”, “fur”

“dog”

Lin
ea

r

Non
-lin

ea
rity

…

Deep nets

65Source: Isola, Torralba, Freeman

𝑓!(𝑥)𝑓"(𝑓!(𝑥))𝑓$(𝑓"(𝑓! 𝑥)	𝑓 𝑥 = 𝑓#(…

“dog”…

Deep nets - Intuition

66Source: Isola, Torralba, Freeman

“has horizontal edge”
“has vertical edge”

“dog”…

Deep nets - Intuition

67Source: Isola, Torralba, Freeman

“has rounded edge”

…

Deep nets - Intuition

68Source: Isola, Torralba, Freeman

“has white fur”
“has paw”

etc

“dog”

How do we
make a

classification?

“dog”…

Deep nets - Intuition

69Source: Isola, Torralba, Freeman

“has white fur”
“has paw”

etc

Classify

Fur

Pa
w

Feature Space

Recall:

Computation has a simple form

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑎𝑥(0, 𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat

But where do we get the weights from?

“dog”

Learned

How do we learn the parameters?

72

Source: Isola, Torralba, Freeman

predicted ground truth

Learning parameters

73

𝐿 =
1
2
(𝑦 − 𝜎(𝑤𝑥 + 𝑏))!

𝐿 =
1
2
(𝑦 − 𝑓(𝑥))!

Squared loss with single-variable network:

Example source: Roger Grosse

Computing derivatives with the chain rule

74

Given: 𝐿 = %
)
(𝑦 − 𝜎(𝑤𝑥 + 𝑏)))

Example source: Roger Grosse

à
&(
&)

= &(
&*

&*
&+

&+
&)

Writing out the layers explicitly:
𝑧 = 𝑤𝑥 + 𝑏
𝑡 = 𝜎(z)

𝐿 =
1
2
(𝑦 − 𝑡))

= (𝑦 − 𝜎(𝑤𝑥 + 𝑏))𝜎!(𝑤𝑥 + 𝑏)
𝜕
𝜕𝑏 (𝑤𝑥 + 𝑏)= (𝑦 − 𝜎(𝑤𝑥 + 𝑏))𝜎!(𝑤𝑥 + 𝑏)
𝜕
𝜕𝑏 (𝑤𝑥 + 𝑏)

= (𝑦 − 𝜎(𝑤𝑥 + 𝑏))
𝜕
𝜕𝑏
(𝑦 − 𝜎(𝑤𝑥 + 𝑏))

Computing derivatives with the chain rule

75 Example source: Roger Grosse

𝜕𝐿
𝜕𝑤 =

𝜕
𝜕𝑤

1
2 (𝑦 − 𝜎(𝑤𝑥 + 𝑏))

"

𝜕
𝜕𝑤

(𝑦 − 𝜎(𝑤𝑥 + 𝑏))

= (𝑦 − 𝜎(𝑤𝑥 + 𝑏))𝜎!(𝑤𝑥 + 𝑏)
𝜕
𝜕𝑤 (𝑤𝑥 + 𝑏)

= (𝑦 − 𝜎(𝑤𝑥 + 𝑏))𝜎!(𝑤𝑥 + 𝑏)𝑥

𝜕𝐿
𝜕𝑏 =

𝜕
𝜕𝑏

1
2 (𝑦 − 𝜎(𝑤𝑥 + 𝑏))

"

= (𝑦 − 𝜎(𝑤𝑥 + 𝑏))
𝜕
𝜕𝑏
(𝑦 − 𝜎(𝑤𝑥 + 𝑏))

= (𝑦 − 𝜎(𝑤𝑥 + 𝑏))𝜎!(𝑤𝑥 + 𝑏)

= (𝑦 − 𝜎(𝑤𝑥 + 𝑏))

= (𝑦 − 𝜎(𝑤𝑥 + 𝑏))𝜎!(𝑤𝑥 + 𝑏)= (𝑦 − 𝜎(𝑤𝑥 + 𝑏)) = (𝑦 − 𝜎(𝑤𝑥 + 𝑏))𝜎!(𝑤𝑥 + 𝑏)
𝜕
𝜕𝑏 (𝑤𝑥 + 𝑏)

Note: For each of these derivatives, you’ll have to compute many things multiple times!

Limitations to this approach

76

• Inefficient! Lots of redundant computation

• We’ll also need to extend this to multivariable functions

• Next lecture: backpropagation

• 1 layer? Linear decision surface.
• 2+ layers? In theory, can represent any function! (if it was

infinitely wide with infinite data)
– Simple proof by M. Nielsen

http://neuralnetworksanddeeplearning.com/chap4.html

• But issue is efficiency: very wide two layers vs narrow
deep model? In practice, more layers helps.

Representational power

77
Source: Isola, Torralba, Freeman

http://neuralnetworksanddeeplearning.com/chap4.html

Backup Slides

Softmax outputs a probability distribution over all predicted classes:

Sigmoid – not a probability distribution:

Sigmoid vs. Softmax

79

Example source: http://playground.tensorflow.org

Example: perceptron

80

𝐲 = 𝜎(𝐖(")𝐱)

http://playground.tensorflow.org

Example source: http://playground.tensorflow.org

Example: multilayer perceptron (MLP)

81

𝐲 = 𝜎(𝐖(")𝑚𝑎𝑥(0,𝐖($)𝐱))

http://playground.tensorflow.org

Example source: http://playground.tensorflow.org

Example: multilayer perceptron (MLP)

82

4 “hidden” units2D vector

http://playground.tensorflow.org

Example source: http://playground.tensorflow.org

Example: multilayer perceptron (MLP)

83

4 “hidden” units2D vector
What does this unit do?

http://playground.tensorflow.org

