
Lecture 7: Neural networks
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• Discussion this week: machine learning
• Reading: 
- Szeliski 5.3
- Goodfellow Deep Feedforward Networks

• Start thinking about project
• PS2 due today – submit to gradescope and canvas
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• Brief history of neural networks
• Computation in neural networks
• Multi-layer perceptrons (for PS4)
• Estimating gradients (to be continued next class).
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Today
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Goal: Non-linear decision boundary
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Perceptron

• In 1957 Frank Rosenblatt invented the perceptron
• Computers at the time were too slow to run the perceptron, so Rosenblatt 

built a special purpose machine with adjustable resistors  
• New York Times Reported: “The Navy revealed the embryo of an electronic 

computer that it expects will be able to walk, talk, see, write, reproduce itself 
and be conscious of its existence”



Minsky and Papert, Perceptrons, 1972
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Source: Isola, Torralba, Freeman
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Based on slide by: Isola, Torralba, Freeman



Parallel Distributed Processing (PDP), 1986
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Source: Isola, Torralba, Freeman
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Source: Isola, Torralba, Freeman



LeCun convolutional neural networks

http://yann.lecun.com/exdb/lenet/index.html
Demos:
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Source: Isola, Torralba, Freeman

http://yann.lecun.com/exdb/lenet/index.html
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Source: Isola, Torralba, Freeman



http://pub.clement.farabet.net/ecvw09.pdf

Neural networks to 
recognize 
handwritten digits 
and human faces?  
yes

Neural networks for 
tougher problems?  
not really
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Source: Isola, Torralba, Freeman

http://pub.clement.farabet.net/ecvw09.pdf


Machine learning circa 2000

• Neural Information Processing Systems (NeurIPS), is a top 
conference on machine learning. 

• For the 2000 conference: 
– title words predictive of paper acceptance:  “Belief Propagation” 

and “Gaussian”.

– title words predictive of paper rejection:  “Neural” and “Network”.
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Source: Isola, Torralba, Freeman
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Neural network winter,
2000
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Source: Isola, Torralba, Freeman



Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

“AlexNet”

Source: Isola, Torralba, Freeman

Got all the “pieces” right, e.g., 
• Trained on ImageNet
• 8 layer architecture (for reference: today we have architectures with 100+ layers)
• Allowed for multi-GP training



Krizhevsky, Sutskever, and Hinton, NeurIPS 2012
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Source: Isola, Torralba, Freeman



Krizhevsky, Sutskever, and Hinton, NeurIPS 2012
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Source: Isola, Torralba, Freeman
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Source: Isola, Torralba, Freeman

?



time
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Perceptrons,
1958
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1972

PDP book,
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Krizhevsky, 
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Hinton, 2012

28 years 28 years

What comes next?
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Source: Isola, Torralba, Freeman



27 Image source: Khan academy

Inspiration: Neurons

https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/the-synapse


[Serre, 2014]28

Inspiration: Hierarchical Representations

Source: Isola, Torralba, Freeman

Best to treat as inspiration. The 
neural nets we’ll talk about aren’t 
very biologically plausible.



Object recognition

Is dog?
Neural Network

Pixel 1

Pixel 2

Dog

Not dog

Pixel 1

Pi
xe

l 2

Input Space

Fur

Pa
w

Feature Space

Goal: automatically learn a function that maps data from the input space to a 
feature space, i.e., "feature learning”, rather than use hand-crafted features

f(x)



Computation in a neural net

35Adapted from: Isola, Torralba, Freeman

Lets say we have some 1D input that we want to convert to some new feature space:

Input 
representation

Output 
representation

Neuron 
(a.k.a unit)

𝑤!"

𝑦!

𝑥! 𝑦! =	$
"

𝑤"!𝑥"

weights
Linear layer



Computation in a neural net

36Adapted from: Isola, Torralba, Freeman

Lets say we have some 1D input that we want to convert to some new feature space:

Input 
representation

Output 
representation

Neuron 
(a.k.a unit)

𝑤!"

𝑦!

𝑥! 𝑦! =	$
"

𝑤"!𝑥"

weights
Linear layer

bias

𝑏"

+	𝑏!



Computation in a neural net – Matrix Multiplication

37

𝑦! =	$
"

𝑤"!𝑥" +	𝑏!

𝑦! = 𝒙#𝒘! + 𝑏!

!
𝒊

𝒘𝒊𝒋𝒙𝒊 = 𝒙 % 𝒘𝒋 = 𝒙#𝒘$

Vector of 
all input 

units

Vector of 
weights

𝒙𝟏 	 𝒙𝟐	… 𝒙𝒏

𝒘𝟏
𝒘𝟐…
𝒘𝒏

+	𝒃𝒋 = 𝒙𝟏 	 𝒙𝟐	… 𝒙𝒏	 𝟏

𝒘𝟏
𝒘𝟐…
𝒘𝒏
𝒃𝒋



Example: Linear Regression

Input 
representation

Output 
representation

Linear layer

38Adapted from: Isola, Torralba, Freeman

𝑥 𝑤 𝑦

𝑏



Computation in a neural net – Full Layer

Input 
representation

Output 
representation

Linear layer

39Adapted from: Isola, Torralba, Freeman

𝑥 𝑤"

𝑦!𝑏"

𝑦"
𝑦#𝑦$

…

𝑦 = 𝑊𝑥 + 𝑏

𝑤$$ ⋯ 𝑤$%
⋮ ⋱ ⋮
𝑤!$ ⋯ 𝑤!%

𝑦
parameters of the model:𝜽 = {𝑾, 𝒃}

𝑥!
𝑥"…
𝑥#

+
𝑏!
𝑏"…
𝑏$

=

𝑦!
𝑦"…
𝑦$



Computation in a neural net – Full Layer

Input 
representation

Output 
representation

Linear layer

40Adapted from: Isola, Torralba, Freeman

𝑥 𝑤"

𝑦!𝑏"

𝑦"
𝑦#𝑦$

…

𝑦 = 𝑊𝑥 + 𝑏
𝑤%% ⋯ 𝑤$&
⋮ ⋱ ⋮
𝑤$% ⋯ 𝑤$&

	
𝑏%
⋮
𝑏$

𝑦

𝑥!
𝑥"…
𝑥#
1

=

𝑦!
𝑦"…
𝑦$

Can again simplify notation by 
appending a 1 to 𝐱

Full layer



Computation in a neural net – Recap

4141

Input 
representation

Output 
representation

𝑥 𝑦

We can now transform our input representation vector into some output 
representation vector using a bunch of linear combinations of the input:

𝑧
We can repeat this as 
many times as we want!



What is the problem with this idea?

Adapted from: Isola, Torralba, Freeman

𝐖!𝐱 𝐖"𝐖!𝐱 𝐖%𝐖"𝐖!𝐱𝐱

Can be expressed as single linear layer!

,
'

𝐖' 𝐱 = 𝐖
̂
𝐱

Limited power: can’t solve XOR :(



Pointwise
Non-linearity

Solution: simple nonlinearity

Adapted from: Isola, Torralba, Freeman

Input 
representation

Output 
representation

Linear layer

𝑥 𝑤"

𝑏" 𝑦 𝑔(𝑦)



Example: linear classification with a perceptron

44 Source: Isola, Torralba, Freeman



Example: linear classification with a perceptron

45 Source: Isola, Torralba, Freeman



Example: linear classification with a perceptron

46 Source: Isola, Torralba, Freeman

“when y is greater than 0, set all 
pixel values to 1 (green), 
otherwise, set all pixel values to 0 
(red)”



Example: linear classification with a perceptron

47 Source: Isola, Torralba, Freeman

“when y is greater than 0, set all 
pixel values to 1 (green), 
otherwise, set all pixel values to 0 
(red)”



Computation in a neural net - nonlinearity

Adapted from: Isola, Torralba, Freeman

Input 
representation

Linear layer

𝑥 𝑤"

𝑏" 𝑦 𝑔(𝑦)

Can’t use with gradient descent, &
&'
𝑔 = 0

Output 
representation



Computation in a neural net - nonlinearity

Adapted from: Isola, Torralba, Freeman

Input 
representation

Linear layer

𝑥 𝑤"

𝑏" 𝑦 𝑔(𝑦)

Sigmoid

Output 
representation



Sigmoid• Bounded between [0,1]

• Saturation for large +/- inputs

• Gradients go to zero

• Better in practice to use: tanh(𝑦)
= 2𝑔(𝑦) − 1 

Computation in a neural net - nonlinearity

50 Adapted from: Isola, Torralba, Freeman



Rectified linear unit (ReLU)• Unbounded output (on positive side)

• Efficient to implement:

• Also seems to help convergence (6x 
speedup vs. tanh in [Krizhevsky et al. 
2012])

• Drawback: if strongly in negative 
region, unit is dead forever (no gradient).

• Default choice: widely used in current 
models!

Computation in a neural net — nonlinearity

53 Source: Isola, Torralba, Freeman



Leaky ReLU
• where α is small (e.g., 0.02)

• Efficient to implement:

• Has non-zero gradients everywhere (unlike 
ReLU)

Computation in a neural net — nonlinearity

54 Source: Isola, Torralba, Freeman



Output 
representation

Intermediate 
representation

Input 
representation

Stacking layers

56 Adapted from: Isola, Torralba, Freeman

𝐡	= “hidden units”



Input 
representation

Output 
representation

Connectivity patterns

Fully connected layer Locally connected layer
(Sparse W)

Input 
representation

Output 
representation

57 Source: Isola, Torralba, Freeman



Input 
representation

Intermediate 
representation

Stacking layers

Output 
representation

58 Source: Isola, Torralba, Freeman

ReLU

𝒉 = 𝑔(𝑾!𝒙 + 𝒃!) 𝒚 = 𝑔(𝑾"𝒉 + 𝒃")
𝜃 = {𝑾!, … ,𝑾# , 𝒃!, … , 𝒃#}

𝒙

𝑾!

𝒃!

𝑾"

𝒃"

𝒉

𝒚



Input 
representation

Intermediate 
representation

Stacking layers

Output 
representation

59 Source: Isola, Torralba, Freeman

ReLU

𝒉 = 𝑔(𝑾!𝒙 + 𝒃!) 𝒚 = 𝑔(𝑾"𝒉 + 𝒃")
𝜃 = {𝑾!, … ,𝑾# , 𝒃!, … , 𝒃#}

𝒙

𝑾!

𝒃!

𝑾"

𝒃"

𝒉

𝒚 positive

negative



Input 
representation

Intermediate 
representation

Stacking layers

Output 
representation

positive

negative

60 Source: Isola, Torralba, Freeman

ReLU

𝒉 = 𝑔(𝑾!𝒙 + 𝒃!) 𝒚 = 𝑔(𝑾"𝒉 + 𝒃")
𝜃 = {𝑾!, … ,𝑾# , 𝒃!, … , 𝒃#}

𝒙
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𝒃!

𝑾"

𝒃"

𝒉

𝒚



Input 
representation

Intermediate 
representation

Stacking layers

Output 
representation

positive

negative

Source: Isola, Torralba, Freeman

ReLU

𝒉 = 𝑔(𝑾!𝒙 + 𝒃!) 𝒚 = 𝑔(𝑾"𝒉 + 𝒃")
𝜃 = {𝑾!, … ,𝑾# , 𝒃!, … , 𝒃#}

𝒙

𝑾!

𝒃!

𝑾"

𝒃"

𝒉

𝒚



Input 
representation

Intermediate 
representation

Stacking layers

Output 
representation

positive

negative

62 Source: Isola, Torralba, Freeman

ReLU

𝒉 = 𝑔(𝑾!𝒙 + 𝒃!) 𝒚 = 𝑔(𝑾"𝒉 + 𝒃")
𝜃 = {𝑾!, … ,𝑾# , 𝒃!, … , 𝒃#}

𝒙

𝑾!

𝒃!

𝑾"

𝒃"

𝒉

𝒚



Input 
representation

Intermediate 
representation

Stacking layers

Output 
representation

positive

negative

63 Source: Isola, Torralba, Freeman

ReLU

𝒉 = 𝑔(𝑾!𝒙 + 𝒃!) 𝒚 = 𝑔(𝑾"𝒉 + 𝒃")
𝜃 = {𝑾!, … ,𝑾# , 𝒃!, … , 𝒃#}

𝒙

𝑾!

𝒃!

𝑾"

𝒃"

𝒉

𝒚



Stacking layers - What’s actually happening?

64 Source: Isola, Torralba, Freeman

Low level features:
e.g., edge, texture, …

higher level features:
e.g., shape

even higher level features:
e.g., “paw”, “fur”



“dog”

Lin
ea

r

Non
-lin

ea
rity

…

Deep nets

65Source: Isola, Torralba, Freeman

𝑓!(𝑥)𝑓"(𝑓!(𝑥))𝑓$(𝑓"(𝑓! 𝑥 	)	𝑓 𝑥 = 𝑓#(	…



“dog”…

Deep nets - Intuition

66Source: Isola, Torralba, Freeman

“has horizontal edge”
“has vertical edge”



“dog”…

Deep nets - Intuition

67Source: Isola, Torralba, Freeman

“has rounded edge”



…

Deep nets - Intuition

68Source: Isola, Torralba, Freeman

“has white fur”
“has paw”

etc

“dog”

How do we 
make a 

classification?



“dog”…

Deep nets - Intuition

69Source: Isola, Torralba, Freeman

“has white fur”
“has paw”

etc

Classify

Fur

Pa
w

Feature Space

Recall:



Computation has a simple form

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑎𝑥(0, 𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat

But where do we get the weights from? 



“dog”

Learned

How do we learn the parameters?

72

Source: Isola, Torralba, Freeman

predicted ground truth



Learning parameters

73

𝐿 =
1
2
(𝑦 − 𝜎(𝑤𝑥 + 𝑏))!

𝐿 =
1
2
(𝑦 − 𝑓(𝑥))!

Squared loss with single-variable network:

Example source: Roger Grosse



Computing derivatives with the chain rule

74

Given:  𝐿 = %
)
(𝑦 − 𝜎(𝑤𝑥 + 𝑏)))

Example source: Roger Grosse

à
&(
&)

= &(
&*

&*
&+

&+
&)

Writing out the layers explicitly:
𝑧 = 𝑤𝑥 + 𝑏
𝑡 = 𝜎(z)

𝐿 =
1
2
(𝑦 − 𝑡))



= (𝑦 − 𝜎(𝑤𝑥 + 𝑏))𝜎!(𝑤𝑥 + 𝑏)
𝜕
𝜕𝑏 (𝑤𝑥 + 𝑏)= (𝑦 − 𝜎(𝑤𝑥 + 𝑏))𝜎!(𝑤𝑥 + 𝑏)
𝜕
𝜕𝑏 (𝑤𝑥 + 𝑏)

= (𝑦 − 𝜎(𝑤𝑥 + 𝑏))
𝜕
𝜕𝑏
(𝑦 − 𝜎(𝑤𝑥 + 𝑏))

Computing derivatives with the chain rule

75 Example source: Roger Grosse

𝜕𝐿
𝜕𝑤 =

𝜕
𝜕𝑤

1
2 (𝑦 − 𝜎(𝑤𝑥 + 𝑏))

"

𝜕
𝜕𝑤

(𝑦 − 𝜎(𝑤𝑥 + 𝑏))

= (𝑦 − 𝜎(𝑤𝑥 + 𝑏))𝜎!(𝑤𝑥 + 𝑏)
𝜕
𝜕𝑤 (𝑤𝑥 + 𝑏)

= (𝑦 − 𝜎(𝑤𝑥 + 𝑏))𝜎!(𝑤𝑥 + 𝑏)𝑥

𝜕𝐿
𝜕𝑏 =

𝜕
𝜕𝑏

1
2 (𝑦 − 𝜎(𝑤𝑥 + 𝑏))

"

= (𝑦 − 𝜎(𝑤𝑥 + 𝑏))
𝜕
𝜕𝑏
(𝑦 − 𝜎(𝑤𝑥 + 𝑏))

= (𝑦 − 𝜎(𝑤𝑥 + 𝑏))𝜎!(𝑤𝑥 + 𝑏)

= (𝑦 − 𝜎(𝑤𝑥 + 𝑏))

= (𝑦 − 𝜎(𝑤𝑥 + 𝑏))𝜎!(𝑤𝑥 + 𝑏)= (𝑦 − 𝜎(𝑤𝑥 + 𝑏)) = (𝑦 − 𝜎(𝑤𝑥 + 𝑏))𝜎!(𝑤𝑥 + 𝑏)
𝜕
𝜕𝑏 (𝑤𝑥 + 𝑏)

Note: For each of these derivatives, you’ll have to compute many things multiple times!



Limitations to this approach

76

• Inefficient! Lots of redundant computation

• We’ll also need to extend this to multivariable functions

• Next lecture: backpropagation



• 1 layer? Linear decision surface.
• 2+ layers? In theory, can represent any function! (if it was 

infinitely wide with infinite data) 
– Simple proof by M. Nielsen

http://neuralnetworksanddeeplearning.com/chap4.html

• But issue is efficiency: very wide two layers vs narrow 
deep model? In practice, more layers helps.

Representational power

77
Source: Isola, Torralba, Freeman

http://neuralnetworksanddeeplearning.com/chap4.html


Backup Slides



Softmax outputs a probability distribution over all predicted classes:

Sigmoid – not a probability distribution:

Sigmoid vs. Softmax

79



Example source: http://playground.tensorflow.org

Example: perceptron

80

𝐲 = 𝜎(𝐖(")𝐱)

http://playground.tensorflow.org


Example source: http://playground.tensorflow.org

Example: multilayer perceptron (MLP)

81

𝐲 = 𝜎(𝐖(")𝑚𝑎𝑥(0,𝐖($)𝐱))

http://playground.tensorflow.org


Example source: http://playground.tensorflow.org

Example: multilayer perceptron (MLP)

82

4 “hidden” units2D vector

http://playground.tensorflow.org


Example source: http://playground.tensorflow.org

Example: multilayer perceptron (MLP)

83

4 “hidden” units2D vector
What does this unit do?

http://playground.tensorflow.org

