Numerical Computing
 \& Images Tutorial

EECS 442
Fall 2023, University of Michigan

Colab Notebook Format

- Like jupyter notebooks on the web
- Execute cells of code
- Useful for immediate visualization (a lot of what we do!)
- Allows us to use GPUs remotely (important for ML)

Numpy Tutorial

Colab:

 https://colab.research.google.com/drive/1f7nAcX Vy7jgvt21LhP dHSmM-ARqUXCD?usp=sharing
Image Loading \& Manipulation

Colab: https://colab.research.google.com/drive/1uNOh4 DIBRb3gA3rH32g3sCyGrcn2crip

Problem Set 1

- You will work in Colab
- Examples from both of these notebooks will be helpful!

Linear Algebra Review

Vectors

- A vector $\mathrm{x} \in \mathrm{R}^{\mathrm{n}}$ is a stack of n real values.

$$
\cdot \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right]^{\top}
$$

- In the computer vision context, x can represent an image vector where each x_{i} is a pixel value in that image

Measuring Length - Norms

- Norms are a measure of the magnitude/ length of the vector
- Formally, a norm $\|\cdot\|: R^{n} \rightarrow[0, \infty)$ is a nonnegative valued function.
- Examples:
- Euclidean (l_{2}) norm (Default choice): $\|\mathrm{x}\|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}$
- Manhattan distance (l_{1} norm): $\|\mathbf{x}\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|$
- In general l_{p} norm $(p \geq 1):\|\mathbf{x}\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\ldots+\left|x_{n}\right|^{p}\right)^{1 / p}$
$-l_{\infty}$ norm: $\|\mathrm{x}\|_{\infty}:=\lim _{p \rightarrow \infty}\|\mathbf{x}\|_{p}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}$

Measuring Length

Magnitude / length / (L2) norm of vector

$$
\|x\|=\|x\|_{(2)}=\left(\sum_{i}^{n} x_{i}^{2}\right)^{1 / 2}
$$

$\mathbf{x}=[2,3] \quad$ here are other norms; assume L2 Unless told otherwise

$$
\begin{array}{|cc}
\prod_{y=[3,1]} & \|x\|_{2}=\sqrt{13} \\
\|y\|_{2}=\sqrt{10} \\
\text { Why? }
\end{array}
$$

Dot Products

What's $\boldsymbol{x} \cdot \boldsymbol{x}$?
Ans: $\boldsymbol{x} \cdot \boldsymbol{x}=\sum x_{i} x_{i}=\|\boldsymbol{x}\|_{2}^{2}$

Matrices

Horizontally concatenate n, m-dim column vectors and you get a $m \times n$ matrix A (here 2×3)

$$
\left.\boldsymbol{A}=\left[\begin{array}{ccc}
\mid & & \mid \\
\boldsymbol{v}_{1} & \cdots & \boldsymbol{v}_{\boldsymbol{n}} \\
\mid & & \mid
\end{array}\right]=\left[\begin{array}{l|l|l|}
v_{1_{1}} \\
v_{1_{2}}
\end{array}\right] \begin{array}{|c|c|}
v_{2_{1}} \\
v_{2_{2}} & v_{3_{1}} \\
v_{3_{2}}
\end{array}\right]
$$

Matrices

$\begin{aligned} & \text { Transpose: flip } \\ & \text { rows / columns }\end{aligned}\left[\begin{array}{l}a \\ b \\ c\end{array}\right]^{T}=\left[\begin{array}{lll}a & b & c\end{array}\right] \quad(3 \times 1)^{\top}=1 \times 3$
Vertically concatenate m, n-dim row vectors and you get a $\mathrm{m} \times \mathrm{n}$ matrix A (here 2×3)

$$
A=\left[\begin{array}{ccc}
- & u_{1}^{\boldsymbol{T}} & - \\
& \vdots & \\
- & \boldsymbol{u}_{\boldsymbol{m}}^{\boldsymbol{T}} & -
\end{array}\right]=\left[\begin{array}{lll}
u_{1_{1}} & u_{1_{2}} & u_{1_{3}} \\
\hline u_{2_{1}} & u_{2_{2}} & u_{2_{3}}
\end{array}\right]
$$

Matrix-Vector Product

$$
\begin{gathered}
\boldsymbol{y}_{2 x 1}=\boldsymbol{A}_{2 x 3} \boldsymbol{x}_{3 x 1} \\
{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\underset{\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{v}_{\mathbf{1}} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3} \\
\mid & \mid & \mid
\end{array}\right]}{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]}} \\
\boldsymbol{y}=x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+x_{3} v_{3}
\end{gathered}
$$

Linear combination of columns of \boldsymbol{A}

Matrix-Vector Product

$$
\begin{gathered}
\boldsymbol{y}_{2 x 1}=\boldsymbol{A}_{2 \times 3} \boldsymbol{x}_{3 \times 1} \\
{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
-\boldsymbol{u}_{\mathbf{1}}^{\boldsymbol{T}}- \\
-\boldsymbol{u}_{\mathbf{2}}^{\boldsymbol{T}}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]} \\
y_{1}=\boldsymbol{u}_{\mathbf{1}}^{\boldsymbol{T}} \boldsymbol{x} \quad y_{2}=\boldsymbol{u}_{\mathbf{2}}^{\boldsymbol{T}} \boldsymbol{x}
\end{gathered}
$$

Dot product between rows of \boldsymbol{A} and \boldsymbol{x}

Matrix Multiplication

Generally: $\boldsymbol{A}_{m n}$ and $\boldsymbol{B}_{n p}$ yield product $(\boldsymbol{A B})_{m p}$
$A B=\left[\begin{array}{ccc}- & a_{1}^{T} & - \\ & \vdots & \\ - & a_{m}^{T} & -\end{array}\right]\left[\begin{array}{ccc}\mid & & \mid \\ b_{1} & \cdots & b_{p} \\ \mid & & \mid\end{array}\right]$
Yes - in A, I'm referring to the rows, and in B, I'm referring to the columns

Matrix Multiplication

Generally: $\boldsymbol{A}_{m n}$ and $\boldsymbol{B}_{n p}$ yield product $(\mathbf{A B})_{m p}$

Matrix Multiplication

- Inner Dimensions must match
- Product gets the outer dimension
- (Yes, it's associative): $A B x=(A)(B x)=(A B) x$
- (No it's not commutative): $A B x \neq(B A) x \neq(B x A)$

Cross-correlation

Consider 1D case for simplicity

- Correlation $\mathrm{c}[m]=h^{*} \mathrm{~g}=\sum_{k} h[m+k] g[k]$
- Convolution $f[m]=h \circ \mathrm{~g}=\sum_{k} h[m-k] g[k]$

Let $h=[3,1,2,5,4], g=[1,2,3]$, then $c=[11,20,24]$:
$\mathrm{c}[0]=\sum_{k} h[0+k] g[k]=h[0] g[0]+h[1] g[1]+h[2] g[2]=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$

Each output element is from a dot product!

$$
\begin{aligned}
& c[0]=\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=3+2+6=11 \\
& c[1]=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=1+4+15=20 \\
& c[2]=\left[\begin{array}{l}
2 \\
5 \\
4
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=2+10+12=24
\end{aligned}
$$

Convolution

Consider 1D case for simplicity

- Correlation $\mathrm{c}[m]=h * \mathrm{~g}=\sum_{k} h[m+k] g[k]$
- Convolution $f[m]=h \circ \mathrm{~g}=\sum_{k} h[m-k] g[k]$

Let $h=[3,1,2,5,4], g=[1,2,3]$, then $\mathrm{f}=[3,7,13,12,20,23,12]$:
$\mathrm{f}[0]=\sum_{k} h[0-k] g[k]=h[0] g[0]+h[-1] g[1]+h[-2] g[2]=\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right] \cdot\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$
Each output element is from a dot product!

0	0	3	1	2	5	4	0	0	
3	2	1							3
	3	2	1						7
		3	2	1					13
			3	2	1				12

Operations They Don't Teach

You Probably Saw Matrix Addition

$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]+\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a+e & b+f \\ c+g & d+h\end{array}\right]$
What is this? FYI: e is a scalar
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]+e=\quad\left[\begin{array}{ll}a+e & b+e \\ c+e & d+e\end{array}\right]$

Broadcasting

If you want to be pedantic and proper, you expand e by multiplying a matrix of 1 s (denoted 1)

$$
\begin{aligned}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+e } & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\mathbf{1}_{2 \times 2} e \\
& =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
e & e \\
e & e
\end{array}\right]
\end{aligned}
$$

Many smart matrix libraries do this automatically. This is the source of many bugs.

Broadcasting Example

Given: a nx2 matrix \mathbf{P} and a 2D column vector \mathbf{v}, Want: nx2 difference matrix

$$
\left.\begin{array}{c}
\boldsymbol{P}=\left[\begin{array}{cc}
x_{1} & y_{1} \\
\vdots & \vdots \\
x_{n} & y_{n}
\end{array}\right] \quad \boldsymbol{v}=\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
\left.\boldsymbol{P}-\boldsymbol{v}^{T}=\left[\begin{array}{cc}
x_{1} & y_{1} \\
\vdots & \vdots \\
x_{n} & y_{n}
\end{array}\right]-\begin{array}{cc}
a & b
\end{array}\right]=\left[\begin{array}{cc}
x_{1}-a & y_{1}-b \\
\vdots & b
\end{array}\right] \\
x_{n}-a \\
\vdots
\end{array}\right]
$$

