Fourier Transform

EECS 442
Fall 2023, University of Michigan

Linear Independence

- A set of vectors are linearly dependent if you can write one as a linear combination of the others
- Suppose: $\boldsymbol{a}=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right] \boldsymbol{b}=\left[\begin{array}{l}0 \\ 6 \\ 0\end{array}\right] \boldsymbol{c}=\left[\begin{array}{l}5 \\ 0 \\ 0\end{array}\right]$

$$
\boldsymbol{x}=\left[\begin{array}{l}
0 \\
0 \\
4
\end{array}\right]=2 \boldsymbol{a} \quad \boldsymbol{y}=\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right]=\frac{1}{2} \boldsymbol{a}-\frac{1}{3} \boldsymbol{b}
$$

Is the set $\{a, b, c\}$ linearly independent?
Is the set $\{a, b, x\}$ linearly independent?

Basis

- Consider all vectors in \mathbb{R}^{3} (3D Plane)
- A set of linearly independent vectors whose span is the whole 3D plane are called the basis for the 3D plane
E.g., the standard basis $\{i, j, k\}$ spans the whole 3D plane:

Any other vector in the plane (e.g., a) is a linear combination of $\{i, j, k\}$

Using Basis for expressing vectors

Example: $\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]=3\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+2\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+5\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]$
$\{\mathrm{i}, \mathrm{j}, \mathrm{k}\}$ are the three basis vectors here
We could decompose it in terms of some other basis as well

Intuition behind Fourier transform: change of basis

$$
\vec{f}=\overrightarrow{e_{1}} \cdot \mathrm{~F}(0)+\overrightarrow{e_{2}} \cdot \mathrm{~F}(1)+\overrightarrow{e_{3}} \cdot \mathrm{~F}(2)
$$

where

$$
\vec{f} \triangleq f(n), \overrightarrow{e_{1}} \triangleq \frac{1}{3} e^{2 \pi i n * \frac{0}{3}}, \overrightarrow{e_{2}} \triangleq \frac{1}{3} e^{2 \pi i n * \frac{1}{3}}, \overrightarrow{e_{3}} \triangleq \frac{1}{3} e^{2 \pi i n * \frac{2}{3}}
$$

$$
\vec{f}=\left[\begin{array}{c}
\mid \\
f \\
\mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{l}
F(0) \\
F(1) \\
F(2)
\end{array}\right] \Leftrightarrow\left[\begin{array}{l}
3 \\
2 \\
5
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+5\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
2 \\
5
\end{array}\right]
$$

Bottom line:

- Fourier coefficients are coordinates in the Fourier basis defined by $\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}$
- Calculating Fourier coefficients is just about finding the projection on the vector $f(n)$ along the basis

Discrete Fourier Transform

We can extend this to any vector of length N :

$$
F[u]=\sum_{n=0}^{N-1} f[n] e^{\left(-2 \pi i \frac{u n}{N}\right)}
$$

$$
\text { where } e^{\left(-2 \pi i \frac{u n}{N}\right)}=\cos \left(2 \pi i \frac{u n}{N}\right)-i \sin \left(2 \pi i \frac{u n}{N}\right)
$$

- Output F is a weighted sum of sines and cosines with the weights governed by input f
- We can think of the exponentials as basis functions, and the function F is expressed in terms of those basis

Continuous Fourier Transform

Going from continuous to discrete just means we take the integral from $-\infty$ to ∞ :

$$
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-i w t} d t
$$

Time domain to frequency domain

- Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies
i.e., if we weighted sum across the different frequencies, we reconstruct the original signal

Frequency Basis

We're using a basis of sinusoids with different frequencies.

Complex Exponential Review

$$
\vec{f} \triangleq f(n), \overrightarrow{e_{1}} \triangleq \frac{1}{3} e^{2 \pi i n * \frac{0}{3}}, \overrightarrow{e_{2}} \triangleq \frac{1}{3} e^{2 \pi i n * \frac{1}{3}}, \overrightarrow{e_{3}} \triangleq \frac{1}{3} e^{2 \pi i n * \frac{2}{3}}
$$

Unit circle in the complex plane

Visualizing Fourier Transform Matrix

$$
\exp \left(-2 \pi i \frac{u n}{N}\right) \quad \text { For } \mathrm{N}=16
$$

When $\mathrm{u}=0, \exp \left(-2 \pi i \frac{u n}{N}\right)=\exp (-2 \pi i)$ for all n
\rightarrow no change in frequency from $\mathrm{n}=0$ to $\mathrm{n}=\mathrm{N}$

Visualizing Fourier Transform Matrix

$$
\exp \left(-2 \pi i \frac{u n}{N}\right) \quad \text { For } \mathrm{N}=16
$$

When $\mathrm{u}=1, \exp \left(-2 \pi i \frac{u n}{N}\right)=\exp \left(-2 \pi i \frac{n}{N}\right)$ for all n
16x16 array
\rightarrow no change in frequency from $\mathrm{n}=0$ to $\mathrm{n}=\mathrm{N}$

Visualizing Fourier Transform Matrix

$$
\exp \left(-2 \pi i \frac{u n}{N}\right) \quad \text { For } \mathrm{N}=16
$$

Examples

Let's say $a=[1,0,0,0], N=4$

$$
F[u]=\sum_{n=0}^{N-1} f[n] e^{\left(-2 \pi i \frac{u n}{N}\right)} \quad(u=0,1, \ldots N-1)
$$

Examples

Let's say a $=[1,0,0,0], N=4$

$$
\begin{gathered}
F[u]=\sum_{n=0}^{N-1} f[n] e^{\left(-2 \pi i \frac{u n}{N}\right)} \quad(u=0,1, \ldots N-1) \\
F[u]=f[0] e^{\left(-2 \pi i \frac{u \pm 0}{4}\right)}+f[1] e^{\left(-2 \pi i \frac{u \cdot 1}{4}\right)}+f[2] e^{\left(-2 \pi i \frac{u+2}{4}\right)}+f[3] e^{\left(-2 \pi i \frac{u \cdot 3}{4}\right)}=f[0]=1
\end{gathered}
$$

$$
\begin{aligned}
& a=n p \cdot \operatorname{array}([1,0,0,0]) \\
& n p \cdot f f t \cdot f f t(a)
\end{aligned} \rightarrow \left\lvert\, \begin{aligned}
& \operatorname{array}([1 \cdot+0 \cdot j, 1 \cdot+0 \cdot j r \\
& 1 .+0 \cdot j, 1 .+0 \cdot j]
\end{aligned}\right.
$$

All coefficients are 1!

1D Fourier Transform and Images

1D Fourier Transform and Images

Represent this function in a Fourier basis. $+F_{4} \times$

1D Fourier Transform and Images

Reconstructions of Different Freq.

