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• A set of vectors are linearly dependent if you can write one as a linear 
combination of the others 

• Suppose:

Is the set {a, b, c} linearly independent? 
Is the set {a, b, x} linearly independent?  

Linear Independence

Slide adapted from David Fouhey



Basis

• Consider all vectors in       (3D Plane) 
• A set of linearly independent vectors whose span is the whole 3D 

plane are called the basis for the 3D plane

E.g., the standard basis {i, j, k} spans the whole 3D plane:

Any other vector in the plane (e.g., a) is a linear combination of {i, j, k} 



Example:

{i, j, k} are the three basis vectors here
We could decompose it in terms of some other basis as well 

Using Basis for expressing vectors



Intuition behind Fourier transform: change of 
basis 
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Bottom line: 
• Fourier coefficients are coordinates in the Fourier basis defined by 
𝑒!, 𝑒", 𝑒#

• Calculating Fourier coefficients is just about finding the projection on the 
vector 𝑓 𝑛  along the basis 



Discrete Fourier Transform 
We can extend this to any vector of length N:
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• Output F is a weighted sum of sines and cosines with the 
weights governed by input f

• We can think of the exponentials as basis functions, and the 
function F is expressed in terms of those basis 



Continuous Fourier Transform 
Going from continuous to discrete just means we take the integral 
from −∞ to ∞:
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Time domain to frequency domain 
• Any univariate function can be rewritten as a weighted sum of sines 

and cosines of different frequencies 
 i.e., if we weighted sum across the different frequencies, we reconstruct the original signal 

These are those coefficients!
Source: A.Efros



U[-1 1]= UF fF

We’re using a basis of sinusoids with different frequencies.
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Frequency Basis



Complex Exponential Review
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Unit circle in the complex plane



For  N=16
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Visualizing Fourier Transform Matrix

When u = 0, exp −2𝜋𝑖 +!
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Visualizing Fourier Transform Matrix



Examples

Let’s say a  = [1, 0, 0, 0], N = 4

𝐹 𝑢 = %
!"#
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𝑓[𝑛]𝑒(%()*
+!
$ ) (𝑢 = 0, 1, …𝑁 − 1)



Examples

Let’s say a  = [1, 0, 0, 0], N = 4

𝐹 𝑢 = %
!"#

$%&

𝑓[𝑛]𝑒(%()*
+!
$ ) (𝑢 = 0, 1, …𝑁 − 1)

𝐹 𝑢 = 𝑓[0] 𝑒("#$%
!	∗$
% ) + 𝑓[1] 𝑒("#$%

!	∗&
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All coefficients are 1!



1
6

1D Fourier Transform and Images
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Represent this function in a Fourier basis.

1D Fourier Transform and Images
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Fourier coefficients
Reconstruction
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1D Fourier Transform and Images
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Reconstructions of Different Freq.


