
Intro to ML
EECS 442 Discussion

Fall 2023

Image Classification

Tiny ImageNet

- Smaller version of ImageNet
- 200 Classes
- Training set: 100k images
- Validation set: 10k images
- Resolution: 64x64x3

Calculate the distance between two images

L2 Distance

Called L2 Distance between two images

Hint for broadcasting: ∥x-y∥^2 = ∥x∥^2 + ∥y∥^2 -
2x^T y

Add and take square root

K-Nearest Neighbors

- Can be applied to any type of data with the right distance metric
- Memorizing the training data and labels and predicting the label of the most

similar training image

For different values of k:

- Find the k points with the shortest L2 distance from x
- These k points are called k-Nearest Neighbors to the point x
- k is a hyperparameter that we can tune

How this looks

Demo: http://vision.stanford.edu/teaching/cs231n-demos/knn/

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Splitting dataset & Choosing k
Machine Learning: generalize in the wild by training on a dataset that is representative of the
samples to which we want to apply our system

To measure how good our system will be:

● Calculate its accuracy on a “test set”
● Only do this once at the end of training

Histogram of Oriented Gradients (HOG)

- Edge and gradient based descriptors
- Uniquely describe the features of images

Steps:

1. Compute the orientations of the gradients
2. Create a histogram of the edge orientations,

with votes weighted by the gradient
magnitudes

3. Perform block normalization across the
histogram

HOG Classification Workflow

Simplified version of HOG:

Tiny
Imagenet

Computing Orientations of the Image Gradients

- Compute gradients of an image along the horizontal and vertical directions
- Convolve with dx = [1 -1] and dy = [1 -1]^T from ps1
- Or convolve with a Sobel filter

- Compute magnitude of each gradient
- Magnitude = sqrt(Gx^2 + Gy^2)

- Compute orientation/angle of each gradient
- Orientation = tan ̂ (-1) (Gy, Gx)
- Use modulo to convert angles to degree in range [0, 180]

- Get an orientation for every pixel

Create Histogram from Orientations and Magnitudes

- Iterate through each pixel in every cell
- Weigh the vote of the orientation base on its magnitude
- Place the vote into the bin where the orientation falls

Linear Classifiers

Linear Classifiers

Bias Trick

Linear Classifier Boundary

Loss Function

Computes how much current model’s prediction deviates from target

K: number of classes

Softmax loss / Multinomial logistic loss
● Softmax activation followed by a cross entropy loss
● Note: in pytorch, “cross entropy loss” function already has a softmax built in

S: score, y: label for given image

Softmax loss properties

Gradient Descent

We want to optimize some objective function J

One iteration of gradient descent:

Batch Gradient Descent

Loss function is

Its gradient is the sum of gradients for each example

Requires iterating over every training example in each gradient step.

Stochastic Gradient Descent

Sample a point instead of looping over all training examples

where B is a minibatch – a random subset of examples

