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Backpropagation
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Neural Networks

x h s

Inputs Hidden  
Layer

Outputs

W1 W2

f(x) = W2 h(W1x + b1) + b2

● Models that can learn varying features of data by approximating almost any nonlinear 
function



Fully Connected Layer
For regular neural networks, the most common layer type is the fully-connected 
layer in which neurons between two adjacent layers are fully pairwise connected, 
but neurons within a single layer share no connections.

The weight dimension is (3, 4) in the right example.

fully connected layer CS231n Convolutional Neural Networks for Visual Recognition

https://cs231n.github.io/neural-networks-1/


Rectified Linear Unit (ReLU)

● Activation function: introduces non-linearity
● Thresholded at zero
● f(x) = max(0, x)
● Accelerates the convergence of Stochastic Gradient Descent (SGD)
● Simple to implement and fast to compute

CS231n Convolutional Neural Networks for Visual Recognition

https://cs231n.github.io/neural-networks-1/


Network Structure for PS4



Computational Graphs

● Computing gradients is infeasible for complex models
○ Need to analytically derive all gradients

● Instead: modularize computation!



Forward and Backward Passes

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

CS231n Convolutional Neural Networks for Visual Recognition

https://cs231n.github.io/neural-networks-1/


Backpropagation:  
Simple Example

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧
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𝜕𝑧
𝜕𝑓 = 𝑞
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Backpropagation of some common operations
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Practice 1
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Forward pass: Compute outputs
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Base 
Case

Backward pass: Compute gradients

𝑓 𝑥,𝑤 =
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1 + 𝑒! "!#!$""#"$"#Another Example
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Backward pass: Compute gradients
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Backward pass: Compute gradients
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Backward pass: Compute gradients
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Backward pass: Compute gradients
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Backward pass: Compute gradients
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SGD + Momentum

Stochastic Gradient Descent

Select training samples instead of looping over all training examples

where B is a minibatch: a random subset of examples



Momentum

SGD with Momentum has the following update rule

where beta is a scalar in range [0,1], dW is the gradient of the network parameter W, v is 
velocity initialized as all zeros.



No Momentum

Source: https://distill.pub/2017/momentum

https://distill.pub/2017/momentum


With Momentum

Source: https://distill.pub/2017/momentum

https://distill.pub/2017/momentum

