EECS 442 Discussion 6 FA 2023

GANs

Datasets

- mini-edges2shoes
- Contains 1,000 training and 100 validation images
- Sketch and image pairs

Pytorch Data Loader

- Loads a custom set of data
- Creates a class containing the images

1. Get the file names of images (use glob.glob)
2. Apply the transformations to those images (transform parameter)

- Construct Pytorch DataLoader
- Construct the custom class containing transformed images (separate train/val)
- Giving it the custom class containing transformed images
- Set batch_size and shuffle

G tries to synthesize fake images that fool D
D tries to identify the fakes

U-Net

Encoder: downsample images by applying convolution
Decoder:

- Concatenate encoder and decoder
- Upsample images by applying convolution to concatenated image

Toy U-Net Example

Encoder: C64-C128-C256
Decoder: C128-C64-C3
\# (Not a part of your solution) Toy example of an U-net architecture class toy_unet(nn.Module):
\# initializers
def \qquad init__(self):

```
        super(generator, self).__init__
```

 \# encoder
 self.conv1 \(=\) nn.Conv2d(3, 64, 4, 2, 1)
 self.conv2 \(=\) nn.Conv2d(64, 64 * 2, 4, 2, 1)
 self.conv3 \(=\) nn.Conv2d(64 * 2, \(644^{*} 4,4,2,1\))
 \# decoder
 self.deconv1 \(=\mathrm{nn}\). ConvTranspose2d(\(64^{*} 4,64{ }^{*} 2,4,2,1\))
 self.deconv2 \(=\mathrm{nn}\). ConvTranspose2d(64 * 2 * 2, 64, 4, 2, 1)
 self.deconv3 \(=\) nn.ConvTranspose2d(64 * 2, 3, 4, 2, 1)
 \# forward method
def forward(self, input):
\# pass through encoder
e1 = self.conv1(input)
e2 = self.conv2(F.relu(e1))
e3 = self.conv3(F.relu(e2, 0.2))
\# pass through decoder
d1 = self.deconv1(F.relu(e3))
d1 = torch.cat([d1, e2], 1) \# Concatenation
d2 $=$ self.deconv2(F.relu(d1))
d2 = torch.cat([d2, e1], 1) \# Concatenation
d3 $=$ self.deconv3(F.relu(d2))
return d3

U-net for GAN

- Ck denotes a Convolution-BatchNorm-ReLU layer with k filters (output channels)
- All convolutions are 4×4 spatial filters applied with stride 2 and padding 1
- Convolutions in the encoder and the discriminator downsample the input by a factor of 2
- Convolutions in the decoder upsample the input by a factor of 2
- Batch normalization not applied to the first layer in the encoder for both the generator and the discriminator

Leaky ReLU

- Problems with ReLU
- ReLU sets all values smaller than 0 to 0
- Gradients of ReLU functions around 0 gradient are all 0 s
- Solution: allows for small values < 0
- Uses a slope to represent negative values

Training Discriminator

- Feed the discriminator the real/fake images and labels
- Compute the real/fake BCE losses
- Training loss for the discriminator = average of real and fake BCE losses
- Backprop + optimize with Adam

$$
\mathcal{L}_{c G A N}(G, D)=\frac{1}{N} \sum_{i=1}^{N} \log D\left(x_{i}, y_{i}\right)+\frac{1}{N} \sum_{i=1}^{N} \log \left(1-D\left(x_{i}, G\left(x_{i}\right)\right) .\right.
$$

Training Generator

Code provided for you
Same process as training the discriminator
L1 loss + BCE loss: the actual generator that we will use
L1 loss only: just for you to see the effects of L1 loss
$\mathcal{L}_{L 1}(G)=\frac{1}{N} \sum_{i=1}^{N}\left[\left\|y_{i}-G\left(x_{i}\right)\right\|_{1}\right]$

Calculating receptive field size

$r_{i}=r_{i-1}+\left(\left(k_{i}-1\right) * \prod_{j=0}^{i-1} s_{j}\right)$
r_{i} : Receptive field at stage i
k_{i} : Kernel size at stage i
s_{j} : Stride at stage j
$r_{0}=1, s_{0}=1$

