EECS 442 Discussion 6 FA 2023

GANs

Datasets

- mini-edges2shoes
 - Contains 1,000 training and 100 validation images
 - Sketch and image pairs

Pytorch Data Loader

- Loads a custom set of data
- Creates a class containing the images
 - 1. Get the file names of images (use glob.glob)
 - 2. Apply the transformations to those images (transform parameter)
- Construct Pytorch DataLoader
 - Construct the custom class containing transformed images (separate train/val)
 - Giving it the custom class containing transformed images
 - Set batch_size and shuffle

G tries to synthesize fake images that fool D D tries to identify the fakes

[Goodfellow et al., 2014]

U-Net

Encoder: downsample images by applying convolution

Decoder:

- Concatenate encoder and decoder
- Upsample images by applying convolution to concatenated image

Toy U-Net Example

Encoder: C64-C128-C256

Decoder: C128-C64-C3

(Not a part of your solution) Toy example of an U-net architecture class toy_unet(nn.Module): # initializers def __init__(self): super(generator, self).__init__() # encoder self.conv1 = nn.Conv2d(3, 64, 4, 2, 1) self.conv2 = nn.Conv2d(64, 64 * 2, 4, 2, 1) self.conv3 = nn.Conv2d(64 * 2, 64 * 4, 4, 2, 1) # decoder self.deconv1 = nn.ConvTranspose2d(64 * 4, 64 * 2, 4, 2, 1) self.deconv2 = nn.ConvTranspose2d(64 * 2 * 2, 64, 4, 2, 1) self.deconv3 = nn.ConvTranspose2d(64 * 2 * 2, 64, 4, 2, 1) self.deconv3 = nn.ConvTranspose2d(64 * 2, 3, 4, 2, 1)

```
# forward method
def forward(self, input):
    # pass through encoder
    e1 = self.conv1(input)
    e2 = self.conv2(F.relu(e1))
    e3 = self.conv3(F.relu(e2, 0.2))
    # pass through decoder
    d1 = self.deconv1(F.relu(e3))
    d1 = torch.cat([d1, e2], 1) # Concatenation
    d2 = self.deconv2(F.relu(d1))
    d2 = torch.cat([d2, e1], 1) # Concatenation
    d3 = self.deconv3(F.relu(d2))
    return d3
```

U-net for GAN

- Ck denotes a Convolution-BatchNorm-ReLU layer with k filters (output channels)
- All convolutions are 4 × 4 spatial filters applied with stride 2 and padding 1
- Convolutions in the encoder and the discriminator downsample the input by a factor of 2
- Convolutions in the decoder upsample the input by a factor of 2
- Batch normalization not applied to the first layer in the encoder for both the generator and the discriminator

Leaky ReLU

- Problems with ReLU
 - ReLU sets all values smaller than 0 to 0
 - Gradients of ReLU functions around 0 gradient are all 0s
- Solution: allows for small values < 0
- Uses a slope to represent negative values

Training Discriminator

- Feed the discriminator the real/fake images and labels
- Compute the real/fake BCE losses
- Training loss for the discriminator = average of real and fake BCE losses
- Backprop + optimize with Adam

$$\mathcal{L}_{cGAN}(G, D) = \frac{1}{N} \sum_{i=1}^{N} \log D(x_i, y_i) + \frac{1}{N} \sum_{i=1}^{N} \log(1 - D(x_i, G(x_i))).$$

Training Generator

Code provided for you

Same process as training the discriminator

L1 loss + BCE loss: the actual generator that we will use

L1 loss only: just for you to see the effects of L1 loss

$$\mathcal{L}_{L1}(G) = \frac{1}{N} \sum_{i=1}^{N} \left[\|y_i - G(x_i)\|_1 \right]$$

Calculating receptive field size

$$r_i = r_{i-1} + ((k_i - 1) * \prod_{j=0}^{i-1} s_j)$$

r_i: Receptive field at stage *i k_i*: Kernel size at stage *i s_j*: Stride at stage *j r*₀ = 1, *s*₀ = 1