
EECS 470

Lecture 1

Computer Architecture

Winter 2024

Slides developed in part by Profs. Brehob, Austin, Falsafi,
Hill, Hoe, Lipasti, Shen, Smith, Sohi, Tyson, Vijaykumar,

Wenisch and probably others…

What Is Computer Architecture?

“The term architecture is used here

to describe the attributes of a

system as seen by the

programmer, i.e., the conceptual

structure and functional behavior

as distinct from the organization

of the dataflow and controls, the

logic design, and the physical

implementation.”

Gene Amdahl, IBM Journal of

R&D, April 1964

Architecture as used here…

• We use a wider definition

– The stuff seen by the programmer

• Instructions, registers, programming model, etc.

– Micro-architecture

• How the architecture is implemented.

Teaching Staff

Instructor

• Dr. Mark Brehob, brehob

– Office hours

• Mondays 10:30-noon (4632 Beyster)

• Sunday 5:30-6:45pm (remote/Zoom)

– I’ll also be around after class for

10-15 minutes most days.

GSI/IAs

Intro

• Bradley Schulz – GSI

• Ian Wrzesinski – GSI

• Mustafa Miyaziwala – IA

Their office hours will be

posted shortly.

Lecture Today

• Class intro (30 minutes)

– Class goals

– Your grade

– Work expected

• Start review

– Fundamental concepts

– Pipelines

– Hazards and Dependencies (time allowing)

– Performance measurement (as reference only)

Outline

Class goals

• Provide a high-level understanding of many of
the relevant issues in modern computer
architecture
– Dynamic Out-of-order processing

– Static (complier based) out-of-order processing

– Memory hierarchy issues and improvements

– Multi-processor issues

– Power and reliability issues

• Provide a low-level understanding of the most
important parts of modern computer
architecture.
– Details about all the functions a given component

will need to perform

– How difficult certain tasks, such as caching, really
are in hardware

Class goals

Communication

• Website: http://www.eecs.umich.edu/courses/eecs470/

• Piazza
– piazza.com/umich/fall2021/eecs470

• Gradescope:
– https://piazza.com/umich/winter2024/eecs470

– Entry Code: 470rules

• Lab

– Attend your assigned section

– You need to go!

– It does meet this week.

http://www.eecs.umich.edu/courses/eecs470/

Course outline – near term
Class goals

HW1 and P1 will be posted tonight

Grading

• Grade weights are:

– Midterm – 22%

– Final Exam – 22%

– Homework/Quiz – 10%

• 5 homeworks, 1 quiz, all equal. Drop the lowest grade.

– Verilog Programming assignments – 8%

• 3 assignments worth 1%, 2%, and 5%

– In lab assignments – 3%

– Project – 35%

• Open-ended (group) processor design in Verilog

• Grades can vary quite a bit, so is a distinguisher.

Your grade

Hours (and hours) of work
• Attend class & lab

– You really need to go to lab!

– 5 hours/week

• Read book & handouts – 2-3 hours/week
• Do homework

– 5 assignments at ~4 hours each/15 weeks

– 1-2 hours/week

• 3 Programming assignments
– 6, 6, 20 hours each = 32 hours/15 weeks

– ~2 hours/week

• Verilog Project
– ~200 hours/15 weeks = 13 hours/week

• General studying – ~ 1 hour/week
• Total:

– ~25 hours/week, some students claim more...

Work expected

“Key” concepts

Amdahl’s Law

Speedup= timewithout enhancement / timewith enhancement

Suppose an enhancement speeds up a fraction f

of a task by a factor of S

timenew = timeorig·((1-f) + f/S)

Soverall = 1 / ((1-f) + f/S)

1

timeorig

f(1 - f)

timeorig

(1 - f)

timenew

f/S

f(1 - f)

timeorig

(1 - f)

timenew

f/S

Parallelism: Work and Critical Path

Parallelism - the amount of independent

sub-tasks available

Work=T1 - time to complete a

computation on a sequential system

Critical Path=T - time to complete the

same computation on an infinitely-

parallel system

Average Parallelism

Pavg = T1 / T
For a p wide system

Tp  max{ T1/p, T }

Pavg>>p  Tp  T1/p

x = a + b;
y = b * 2
z =(x-y) * (x+y)

Locality Principle

One’s recent past is a good indication of near
future.
– Temporal Locality: If you looked something up, it

is very likely that you will look it up again soon

– Spatial Locality: If you looked something up, it is
very likely you will look up something nearby next

Locality == Patterns == Predictability

Converse:

Anti-locality : If you haven’t done something
for a very long time, it is very likely you won’t
do it in the near future either

Memoization

Dual of temporal locality but for computation

If something is expensive to compute, you might want

to remember the answer for a while, just in case you

will need the same answer again

Why does memoization work??

Examples

– Trace caches

Amortization

overhead cost : one-time cost to set something up

per-unit cost : cost for per unit of operation

total cost = overhead + per-unit cost x N

It is often okay to have a high overhead cost if the cost

can be distributed over a large number of units

 lower the average cost

average cost = total cost / N

= (overhead / N) + per-unit cost

Trends in computer architecture

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

1985 1990 1995 2000 2005 2010 2015 2020

Transistors (100,000's)

Power (W)

Performance (GOPS)

Efficiency (GOPS/W)

A Paradigm Shift In Computing

Era of High Performance Computing Era of Energy-Efficient Computing
c. 2000

Limits on heat extraction

Limits on energy-efficiency of operations

Stagnates performance growth

IEEE Computer—April 2001
T. Mudge

The Memory Wall

Today: 1 mem access  500 arithmetic ops

1

10

100

1000

10000

1985 1990 1995 2000 2005 2010

P
e
rf

o
rm

a
n

c
e

Source: Hennessy & Patterson, Computer Architecture: A Quantitative Approach, 4th ed.

Processor

Memory

Reliability Wall

Transient faults

– E.g, high-energy particle strikes

Manufacturing faults

– E.g., broken connections

Wearout faults

– E.g., Electromigration

Device variability
(not all transistors created equal)

N+ N+

Source Drain
Gate

P--
+

-
+

-
+
-
+

-
+

burn-in

transients

viainterconnect

Review of basic pipelining

Review of basic pipelining

• 5 stage “RISC” load-store architecture

– About as simple as things get

1. Instruction fetch:

• get instruction from memory/cache

2. Instruction decode:

• translate opcode into control signals and read regs

3. Execute:

• perform ALU operation

4. Memory:

• Access memory if load/store

5. Writeback/retire:

• update register file

Pipeline review

Pipelined implementation

• Break the execution of the instruction into

cycles (5 in this case).

• Design a separate datapath stage for the

execution performed during each cycle.

• Build pipeline registers to communicate

between the stages.

Stage 1: Fetch

• Design a datapath that can fetch an instruction from

memory every cycle.

– Use PC to index memory to read instruction

– Increment the PC (assume no branches for now)

• Write everything needed to complete execution to

the pipeline register (IF/ID)

– The next stage will read this pipeline register.

– Note that pipeline register must be edge triggered

In
st

ru
ct

io
n

b
it

s

IF / ID
Pipeline register

PC

Instruction

Memory/

Cache

en

en

1

+

M

U

X

R
es

t
o
f

p
ip

el
in

ed
 d

a
ta

p
a
th

P
C

 +
 1

Stage 2: Decode

• Design a datapath that reads the IF/ID pipeline
register, decodes instruction and reads register file
(specified by regA and regB of instruction bits).

– Decode can be easy, just pass on the opcode and let later
stages figure out their own control signals for the
instruction.

• Write everything needed to complete execution to
the pipeline register (ID/EX)

– Pass on the offset field and both destination register
specifiers (or simply pass on the whole instruction!).

– Including PC+1 even though decode didn’t use it.

Destreg

Data

ID / EX
Pipeline register

C
o
n

te
n

ts

O
f

re
g
A

C
o

n
te

n
ts

O
f

re
g
BRegister File

regA

regB

en

R
es

t
o
f

p
ip

el
in

ed
 d

a
ta

p
a
th

In
st

ru
ct

io
n

b
it

s

IF / ID
Pipeline register

P
C

 +
 1

P
C

 +
 1

C
o
n

tr
o
l

S
ig

n
a
lsS
ta

g
e

1
:

F
et

ch
 d

a
ta

p
a
th

Stage 3: Execute

• Design a datapath that performs the proper ALU
operation for the instruction specified and the
values present in the ID/EX pipeline register.

– The inputs are the contents of regA and either the
contents of RegB or the offset field on the instruction.

– Also, calculate PC+1+offset in case this is a branch.

• Write everything needed to complete execution to
the pipeline register (EX/Mem)

– ALU result, contents of regB and PC+1+offset

– Instruction bits for opcode and destReg specifiers

ID / EX
Pipeline register

C
o
n

te
n

ts

O
f

re
g
A

C
o

n
te

n
ts

O
f

re
g
B

R
es

t
o
f

p
ip

el
in

ed
 d

a
ta

p
a
th

A
lu

R
es

u
lt

EX/Mem
Pipeline register

P
C

 +
 1

C
o
n

tr
o
l

S
ig

n
a
lsS

ta
g
e

2
:

D
ec

o
d

e
d

a
ta

p
a
th

C
o

n
tr

o
l

S
ig

n
a
ls

P
C

+
1

+
o
ff

se
t

+

co
n

te
n

ts

o
f

re
g
B

A

L

U

M

U

X

Stage 4: Memory Operation

• Design a datapath that performs the proper

memory operation for the instruction specified and

the values present in the EX/Mem pipeline register.

– ALU result contains address for ld and st instructions.

– Opcode bits control memory R/W and enable signals.

• Write everything needed to complete execution to

the pipeline register (Mem/WB)

– ALU result and MemData

– Instruction bits for opcode and destReg specifiers

A
lu

R
es

u
lt

Mem/WB
Pipeline register

R
es

t
o
f

p
ip

el
in

ed
 d

a
ta

p
a
th

A
lu

R
es

u
lt

EX/Mem
Pipeline register

S
ta

g
e

3
:

E
x
ec

u
te

 d
a
ta

p
a
th

C
o

n
tr

o
l

S
ig

n
a
ls

P
C

+
1

+
o
ff

se
t

co
n

te
n

ts

o
f

re
g
B

This goes back to the MUX

before the PC in stage 1.

M
em

o
ry

R
ea

d
 D

a
ta

Data Memory

en R/W

C
o

n
tr

o
l

S
ig

n
a
ls

MUX control

for PC input

Stage 5: Write back

• Design a datapath that conpletes the execution

of this instruction, writing to the register file

if required.

– Write MemData to destReg for ld instruction

– Write ALU result to destReg for add or nand

instructions.

– Opcode bits also control register write enable

signal.

A
lu

R
es

u
lt

Mem/WB
Pipeline register

S
ta

g
e

4
:

M
em

o
ry

 d
a
ta

p
a
th

C
o

n
tr

o
l

S
ig

n
a
ls

M
em

o
ry

R
ea

d
 D

a
ta

M

U

X

This goes back to data

input of register file

This goes back to the

destination register specifier

M

U

X

bits 0-2

bits 16-18

register write enable

What can go wrong?

• Data hazards: since register reads occur in stage 2

and register writes occur in stage 5 it is possible to

read the wrong value if is about to be written.

• Control hazards: A branch instruction may change

the PC, but not until stage 4. What do we fetch

before that?

• Exceptions: How do you handle exceptions in a

pipelined processor with 5 instructions in flight?

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

Bits 0-2

Bits 16-18

op

dest

offset

valB

valA

PC+1PC+1

target

ALU

result

op

dest

valB

op

dest

ALU

result

mdata

eq?

in
stru

ctio
n

0

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

Bits 22-24

data

dest

Fetch Decode Execute Memory WB
Basic Pipelining

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

op

dest

offset

valB

valA

PC+1PC+1

target

ALU

result

op

dest

valB

op

dest

ALU

result

mdata

eq?

in
stru

ctio
n

0

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

data

dest

Fetch Decode Execute Memory WB
Basic Pipelining

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

op

offset

valB

valA

PC+1PC+1

target

ALU

result

op

valB

op

ALU

result

mdata

eq?

in
stru

ctio
n

0

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

fwd fwd fwd

data

Fetch Decode Execute Memory WB
Basic Pipelining

Measuring performance

This will likely not be covered in class but you need to read it.

Metrics of Performance

Time (latency)
 elapsed time vs. processor time

Rate (bandwidth or throughput)
 performance = rate = work per time

Distinction is sometimes blurred
 consider batched vs. interactive processing

 consider overlapped vs. non-overlapped processing

 may require conflicting optimizations

What is the most popular metric of performance?

The “Iron Law” of Processor
Performance

Processor Performance = ---------------
Time

 Program

= ------------------ X ---------------- X ------------
Instructions Cycles

 Program Instruction

Time

Cycle

 (code size) (CPI) (cycle time)

Architecture --> Implementation --> Realization

 Compiler Designer Processor Designer Chip Designer

MIPS - Millions of Instructions per Second

MIPS =

When comparing two machines (A, B) with the same instruction set,
MIPS is a fair comparison (sometimes…)

But, MIPS can be a “meaningless indicator of performance…”

• instruction sets are not equivalent

• different programs use a different instruction mix

• instruction count is not a reliable indicator of work
 some optimizations add instructions

 instructions have varying work

MIPS

of instructions

benchmark

benchmark

total run time

1,000,000

X

MIPS (Cont.)

Example:
 Machine A has a special instruction for performing square root
 It takes 100 cycles to execute

 Machine B doesn’t have the special instruction
 must perform square root in software using simple instructions
 e.g, Add, Mult, Shift each take 1 cycle to execute

 Machine A: 1/100 MIPS = 0.01 MIPS
 Machine B: 1 MIPS

MFLOPS

MFLOPS = (FP ops/program) x (program/time) x 10-6

Popular in scientific computing
 There was a time when FP ops were much much slower

than regular instructions (i.e., off-chip, sequential execution)

Not great for “predicting” performance because it
 ignores other instructions (e.g., load/store)

 not all FP ops are created equally

 depends on how FP-intensive program is

Beware of “peak” MFLOPS!

Comparing Performance

Often, we want to compare the performance of different machines or
different programs. Why?

 help architects understand which is “better”

 give marketing a “silver bullet” for the press release

 help customers understand why they should buy <my machine>

Performance vs. Execution Time

Often, we use the phrase “X is faster than Y”

 Means the response time or execution time is lower on X than on Y

 Mathematically, “X is N times faster than Y” means

Execution TimeY = N
Execution TimeX

Execution TimeY = N = 1/PerformanceY = PerformanceX

Execution TimeX 1/PerformanceX PerformanceY

Performance and Execution time are reciprocals

 Increasing performance decreases execution time

By Definition

Machine A is n times faster than machine B iff
perf(A)/perf(B) = time(B)/time(A) = n

Machine A is x% faster than machine B iff
perf(A)/perf(B) = time(B)/time(A) = 1 + x/100

E.g., A 10s, B 15s
15/10 = 1.5 → A is 1.5 times faster than B
15/10 = 1 + 50/100 → A is 50% faster than B

Remember to compare “performance”

Let’s Try a Simpler Example

Two machines timed on two benchmarks

Machine A Machine B
Program 1 2 seconds 4 seconds

Program 2 12 seconds 8 seconds

 How much faster is Machine A than Machine B?

 Attempt 1: ratio of run times, normalized to Machine A times

program1: 4/2 program2 : 8/12

 Machine A ran 2 times faster on program 1, 2/3 times faster on program 2

 On average, Machine A is (2 + 2/3) /2 = 4/3 times faster than Machine B

It turns this “averaging” stuff can fool us; watch…

Example (con’t)

Two machines timed on two benchmarks

Machine A Machine B
Program 1 2 seconds 4 seconds

Program 2 12 seconds 8 seconds

 How much faster is Machine A than B?

 Attempt 2: ratio of run times, normalized to Machine B times

program 1: 2/4 program 2 : 12/8

 Machine A ran program 1 in 1/2 the time and program 2 in 3/2 the time

 On average, (1/2 + 3/2) / 2 = 1

 Put another way, Machine A is 1.0 times faster than Machine B

Example (con’t)

Two machines timed on two benchmarks

Machine A Machine B
Program 1 2 seconds 4 seconds

Program 2 12 seconds 8 seconds

 How much faster is Machine A than B?

 Attempt 3: ratio of run times, aggregate (total sum) times, norm. to A

Machine A took 14 seconds for both programs

Machine B took 12 seconds for both programs

Therefore, Machine A takes 14/12 of the time of Machine B

Put another way, Machine A is 6/7 faster than Machine B

Which is Right?

Question:

 How can we get three different answers?

Solution

 Because, while they are all reasonable calculations…

…each answers a different question

We need to be more precise in understanding and posing these
performance & metric questions

Using a Weighted Sum
(or weighted average)

Machine A Machine B
Program 1 2 seconds (20%) 4 seconds (20%)

Program 2 12 seconds (80%) 8 seconds (80%)

Total 10 seconds 7.2 seconds

Allows us to determine relative performance 10/7.2 = 1.38
--> Machine B is 1.38 times faster than Machine A

Summary

Performance is important to measure

 For architects comparing different deep mechanisms

 For developers of software trying to optimize code, applications

 For users, trying to decide which machine to use, or to buy

Performance metrics are subtle

 Easy to mess up the “machine A is XXX times faster than machine B”
numerical performance comparison

 You need to know exactly what you are measuring: time, rate, throughput,
CPI, cycles, etc

 You need to know how combining these to give aggregate numbers does
different kinds of “distortions” to the individual numbers

 No metric is perfect, so lots of emphasis on standard benchmarks today

