
EECS 470

Further review: Pipeline Hazards and
More

Lecture 2 – Winter 2024

Slides developed in part by Profs. Austin, Brehob, Falsafi, Hill, Hoe, Lipasti,
Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar, and Wenisch of Carnegie
Mellon University, Purdue University, University of Michigan, University of
Pennsylvania, and University of Wisconsin.

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth,
Shen, Smith, Sohi, Tyson, Wenisch, Vijaykumar

Announcements

• HW1 due 1/18 @10pm (2 days)
 Use office hours, this isn’t trivial.
 Some review, some stuff to learn on your own.

• Programming assignment 1 due 1/23 (7 days)
 Hand-in electronically by 10pm

• Should be reading
 C.1-C.3 (review)
 3.1, 3.4-3.5 (new material)

• Get on 470’s Piazza site (link on website)

2

Bureaucracy &

Scheduling

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth,
Shen, Smith, Sohi, Tyson, Wenisch, Vijaykumar

Today

• Touch on performance

• Cover a bit on ISAs

• Pickup where we left off on pipelining

3/61

Bureaucracy &

Scheduling

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth,
Shen, Smith, Sohi, Tyson, Wenisch, Vijaykumar

4

Performance – Key Points

Amdahl’s law

Soverall = 1 / ((1-f) + f/S)

Iron law

Averaging Techniques

Cycle

Time

nInstructio

Cycles

Program

nsInstructio

Program

Time
=

 =

n

i iTime
n 1

1

 =

n

i

iRate

n

1

1

Arithmetic
Time

Harmonic
Rates

Performance

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth,
Shen, Smith, Sohi, Tyson, Wenisch, Vijaykumar

Speedup

• While speedup is generally is used to explain the impact of
parallel computation, we can also use it to discuss any
performance improvement.
 Keep in mind that if execution time stays the same, speedup is 1.

 Speedup=
𝑇𝑜𝑙𝑑

𝑇𝑛𝑒𝑤

 A speedup of 2.0 means that it takes half as long to do something.

 So 0.5 “speedup” actually means it takes twice as long to do
something.

 Be careful when reading papers, folks sometimes use it incorrectly
 Sometimes they use %

5/73

Performance

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin,
Roth, Shen, Smith, Sohi, Tyson, Wenisch, Vijaykumar

EECS 470

Instruction Set Architecture

ISA

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth,
Shen, Smith, Sohi, Tyson, Wenisch, Vijaykumar

Instruction Set Architecture

“Instruction set architecture (ISA) is the structure of a computer
that a machine language programmer (or a compiler) must
understand to write a correct (timing independent) program for
that machine”

IBM introducing 360 in 1964

- IBM 360 is a family of binary-compatible machines with distinct
microarchitectures and technologies, ranging from Model 30 (8-
bit datapath, up to 64KB memory) to Model 70 (64-bit datapath,
512KB memory) and later Model 360/91 (the Tomasulo).

- IBM 360 replaced 4 concurrent, but incompatible lines of IBM
architectures developed over the previous 10 years

ISA

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth,
Shen, Smith, Sohi, Tyson, Wenisch, Vijaykumar

ISA: A contract between HW and SW

• ISA (instruction set architecture)

 A well-defined hardware/software interface

 The “contract” between software and hardware
 Functional definition of operations, modes, and storage locations

supported by hardware

 Precise description of how to invoke, and access them

 No guarantees regarding
 How operations are implemented

 Which operations are fast and which are slow and when

 Which operations take more power and which take less

ISA

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth,
Shen, Smith, Sohi, Tyson, Wenisch, Vijaykumar

Components of an ISA

• Programmer-visible states

 Program counter, general purpose registers,
memory, control registers

• Programmer-visible behaviors (state transitions)

 What to do, when to do it

• A binary encoding

ISAs last 25+ years (because of SW cost)…

…be careful what goes in

if imem[pc]==“add rd, rs, rt”

then

pc  pc+1

gpr[rd]=gpr[rs]+grp[rt]

Example “register-transfer-level”
description of an instruction

ISA

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth,
Shen, Smith, Sohi, Tyson, Wenisch, Vijaykumar

RISC vs CISC

• Recall “Iron” law:
 (instructions/program) * (cycles/instruction) * (seconds/cycle)

• CISC (Complex Instruction Set Computing)
 Improve “instructions/program” with “complex” instructions

 Easy for assembly-level programmers, good code density

• RISC (Reduced Instruction Set Computing)
 Improve “cycles/instruction” with many single-cycle instructions

 Increases “instruction/program”, but hopefully not as much

 Help from smart compiler

 Perhaps improve clock cycle time (seconds/cycle)

 via aggressive implementation allowed by simpler instructions

ISA

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth,
Shen, Smith, Sohi, Tyson, Wenisch, Vijaykumar

What Makes a Good ISA?

• Programmability
 Easy to express programs efficiently?

• Implementability
 Easy to design high-performance implementations?

 More recently
 Easy to design low-power implementations?
 Easy to design high-reliability implementations?
 Easy to design low-cost implementations?

• Compatibility
 Easy to maintain programmability (implementability) as languages

and programs (technology) evolves?

 x86 (IA32) generations: 8086, 286, 386, 486, Pentium, PentiumII,
PentiumIII, Pentium4,…

ISA

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth,
Shen, Smith, Sohi, Tyson, Wenisch, Vijaykumar

Typical Instructions (Opcodes)

What operations are necessary? {sub, ld & st, conditional br.}
What is the minimum complete ISA for a von Neuman machine?

Too little or too simple → not expressive enough
 difficult to program (by hand)
 programs tend to be bigger

Too much or too complex →most of it won’t be used
 too much “baggage” for implementation.
 difficult choices during compiler optimization

Type Example Instruction

Arithmetic and logical and, add
Data transfer move, load
Control branch, jump, call, return
System trap, rett
Floating point add, mul, div, sqrt
Decimal addd, convert
String move, compare

ISA

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth,
Shen, Smith, Sohi, Tyson, Wenisch, Vijaykumar

Basic Pipelining

Basic Pipelining

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth,
Shen, Smith, Sohi, Tyson, Wenisch, Vijaykumar

Before there was pipelining…

Basic datapath: fetch, decode, execute
• Single-cycle control: hardwired

+ Low CPI (1)
– Long clock period (to accommodate slowest instruction)

• Multi-cycle control: micro-programmed
+ Short clock period
– High CPI

Can we have both low CPI and short clock period?
 Not if datapath executes only one instruction at a time
 No good way to make a single instruction go faster

insn0.fetch, dec, exec

Single-cycle

Multi-cycle

insn1.fetch, dec, exec

insn0.decinsn0.fetch

insn1.decinsn1.fetch

insn0.exec

insn1.exec

Basic Pipelining

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth,
Shen, Smith, Sohi, Tyson, Wenisch, Vijaykumar

Pipelining

• Important performance technique
 Improves throughput at the expense of latency

 Why does latency go up?

• Begin with multi-cycle design
 When instruction advances from stage 1 to 2…

… allow next instruction to enter stage 1

 Each instruction still passes through all stages

+ But instructions enter and leave at a much faster rate

• Automotive assembly line analogy

insn0.decinsn0.fetch

insn1.decinsn1.fetchMulti-cycle

Pipelined

insn0.exec

insn1.exec

insn0.decinsn0.fetch

insn1.decinsn1.fetch

insn0.exec

insn1.exec

Basic Pipelining

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth,
Shen, Smith, Sohi, Tyson, Wenisch, Vijaykumar

Pipeline Illustrated:

Gate
Delay

Comb. Logic
n Gate Delay

Gate
DelayL Gate

DelayL

L Gate
DelayL Gate

DelayL

L BW = ~(1/n)

n
--
2

n
--
2

n
--
3

n
--
3

n
--
3

BW = ~(2/n)

BW = ~(3/n)

Basic Pipelining

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth,
Shen, Smith, Sohi, Tyson, Wenisch, Vijaykumar

370 Processor Pipeline Review

I-cache
Reg

File
PC

+1

D-cacheALU

Fetch Decode Memory

(Write-back)

Tpipeline = Tbase / 5

Execute

Basic Pipelining

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth,
Shen, Smith, Sohi, Tyson, Wenisch, Vijaykumar

18

Basic Pipelining

• Data hazards

 What are they?

 How do you detect them?

 How do you deal with them?

• Micro-architectural changes

 Pipeline depth

 Pipeline width

• Forwarding ISA (minor point)

• Control hazards (time allowing)

Basic Pipelining

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

Bits 0-2

Bits 16-18

op

dest

offset

valB

valA

PC+1PC+1

target

ALU

result

op

dest

valB

op

dest

ALU

result

mdata

eq?

in
stru

ctio
n

0

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

Bits 22-24

data

dest

Fetch Decode Execute Memory WB
Basic Pipelining

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

op

dest

offset

valB

valA

PC+1PC+1

target

ALU

result

op

dest

valB

op

dest

ALU

result

mdata

eq?

in
stru

ctio
n

0

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

data

dest

Fetch Decode Execute Memory WB
Basic Pipelining

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

op

offset

valB

valA

PC+1PC+1

target

ALU

result

op

valB

op

ALU

result

mdata

eq?

in
stru

ctio
n

0

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

fwd fwd fwd

data

Fetch Decode Execute Memory WB
Basic Pipelining

Pipeline function for ADD

• Fetch: read instruction from memory

• Decode: read source operands from reg

• Execute: calculate sum

• Memory: Pass results to next stage

• Writeback: write sum into register file

Basic Pipelining

Data Hazards

add 1 2 3

nand 3 4 5

time

fetch decode execute memory writeback

fetch decode execute memory writeback

add

nand

If not careful, you will read the wrong value of R3

Pipelining &

Data Hazards

Three approaches to
handling data hazards

• Avoidance

– Make sure there are no hazards in the code

• Detect and Stall

– If hazards exist, stall the processor until they
go away.

• Detect and Forward

– If hazards exist, fix up the pipeline to get the
correct value (if possible)

Pipelining &

Data Hazards

Handling data hazards:
avoid all hazards

• Assume the programmer (or the compiler)

knows about the processor implementation.

– Make sure no hazards exist.

• Put noops between any dependent instructions.

add 1 2 3

noop

noop

nand 3 4 5

write R3 in cycle 5

read R3 in cycle 6

Pipelining &
Data Hazards

Avoidance
Detect and Stall
Detect and Forward

Problems with this solution

• Old programs (legacy code) may not run

correctly on new implementations

– Longer pipelines need more noops

• Programs get larger as noops are included

– Especially a problem for machines that try to execute

more than one instruction every cycle

– Intel EPIC: Often 25% - 40% of instructions are noops

• Program execution is slower

– CPI is one, but some I’s are noops

Pipelining & Data Hazards
Avoidance
Detect and Stall
Detect and Forward

Handling data hazards:
detect and stall

• Detection:

– Compare regA with previous DestRegs

• 3 bit operand fields

– Compare regB with previous DestRegs

• 3 bit operand fields

• Stall:

– Keep current instructions in fetch and decode

– Pass a noop to execute

Pipelining & Data Hazards
Avoidance
Detect and Stall
Detect and Forward

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

op

offset

valB

valA

PC+1PC+1

target

ALU

result

op

valB

op

ALU

result

mdata

eq?

a
d

d
 1

 2
 3

7

10

14

0

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

data

End of Cycle 1
Pipelining & Data Hazards

Avoidance
Detect and Stall
Detect and Forward

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

add

3

7

14

PC+1PC+1

target

ALU

result

op

valB

op

ALU

result

mdata

eq?

n
a

n
d

 3
 4

 5

7

10

14

0

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

data

3

End of Cycle 2
Pipelining & Data Hazards

Avoidance
Detect and Stall
Detect and Forward

Hazard detection

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

add

3

7

14

PC+1PC+1

target

ALU

result

op

valB

op

ALU

result

mdata

eq?

n
a

n
d

 3
 4

 5

7

10

14

0

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

data

3

3

First half of cycle 3
Pipelining & Data Hazards

Avoidance
Detect and Stall
Detect and Forward

REG

file

IF/

ID

ID/

EX

3

compare

Hazard

detected

regA

regB

compare

compare compare

3

Pipelining & Data Hazards
Avoidance
Detect and Stall
Detect and Forward

3

Hazard

detected

regA

regB

compare

0 1 1

0 1 1

0 0 0

1
Pipelining & Data Hazards

Avoidance
Detect and Stall
Detect and Forward

Handling data hazards:
detect and stall the pipeline

until ready
• Detection:

– Compare regA with previous DestReg

• 3 bit operand fields

– Compare regB with previous DestReg

• 3 bit operand fields

• Stall:

Keep current instructions in fetch and decode

Pass a noop to execute

Pipelining & Data Hazards
Avoidance
Detect and Stall
Detect and Forward

Hazard

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

add

7

14

12

target

ALU

result

valB

ALU

result

mdata

eq?n
a

n
d

 3
 4

 5

7

10

11

14

0

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

data

3

3

en

en

First half of cycle 3
Pipelining & Data Hazards

Avoidance
Detect and Stall
Detect and Forward

Handling data hazards:
detect and stall the pipeline

until ready
• Detection:

– Compare regA with previous DestReg

• 3 bit operand fields

– Compare regB with previous DestReg

• 3 bit operand fields

• Stall:

– Keep current instructions in fetch and decode

– Pass a noop to execute

Pipelining & Data Hazards
Avoidance
Detect and Stall
Detect and Forward

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

2

21

add

ALU

result

mdata

n
a

n
d

 3
 4

 5

7

10

11

14

0

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

data

3

End of cycle 3

noop

Pipelining & Data Hazards
Avoidance
Detect and Stall
Detect and Forward

Hazard

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

noop

2

21

add

ALU

result

mdata

n
a

n
d

 3
 4

 5

7

10

11

14

0

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

data

3

3

en

en

First half of cycle 4
Pipelining & Data Hazards

Avoidance
Detect and Stall
Detect and Forward

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

noop

2

noop add

21

n
a

n
d

 3
 4

 5

7

10

11

14

0

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

data

3

End of cycle 4

noop

Pipelining & Data Hazards
Avoidance
Detect and Stall
Detect and Forward

No Hazard

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

noop

2

noop add

21

n
a

n
d

 3
 4

 5

7

10

11

14

0

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

data

3

3

First half of cycle 5
Pipelining & Data Hazards

Avoidance
Detect and Stall
Detect and Forward

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

nand

11

21

23

noop noop

a
d

d
 3

 7
 7

7

21

11

77

14

1

0

8

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

5
data

End of cycle 5
Pipelining & Data Hazards

Avoidance
Detect and Stall
Detect and Forward

No more hazard: stalling

add 1 2 3

nand 3 4 5

time

fetch decode execute memory writeback

fetch decode decode decode execute

add

nand

We are careful to get the right value of R3

hazard hazard

Pipelining & Data Hazards
Avoidance
Detect and Stall
Detect and Forward

Problems with detect and stall

• CPI increases every time a hazard is detected!

• Is that necessary? Not always!

– Re-route the result of the add to the nand

• nand no longer needs to read R3 from reg file

• It can get the data later (when it is ready)

• This lets us complete the decode this cycle

– But we need more control to remember that the data that

we aren’t getting from the reg file at this time will be

found elsewhere in the pipeline at a later cycle.

Pipelining & Data Hazards
Avoidance
Detect and Stall
Detect and Forward

Handling data hazards:
detect and forward

• Detection: same as detect and stall

– Except that all 4 hazards are treated differently

• i.e., you can’t logical-OR the 4 hazard signals

• Forward:

– New datapaths to route computed data to

where it is needed

– New Mux and control to pick the right data

Pipelining & Data Hazards
Avoidance
Detect and Stall
Detect and Forward

Detect and Forward Example

add 1 2 3 // r3 = r1 + r2

nand 3 4 5 // r5 = r3 NAND r4

add 6 3 7 // r7 = r3 + r6

lw 3 6 10 // r6 = MEM[r3+10]

sw 6 2 12 // MEM[r6+12]=r2

Pipelining & Data Hazards
Avoidance
Detect and Stall
Detect and Forward

Hazard

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

add

7

14

12

n
a

n
d

 3
 4

 5

7

10

11

77

14

1

0

8

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

data

3

fwd fwd fwd

3

First half of cycle 3
Pipelining & Data Hazards

Avoidance
Detect and Stall
Detect and Forward

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

nand

11

10

23

21

add

a
d

d
 6

 3
 7

7

10

11

77

14

1

0

8

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

5
data

H1

3

End of cycle 3
Pipelining & Data Hazards

Avoidance
Detect and Stall
Detect and Forward

New Hazard

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

nand

11

10

23

21

add

a
d

d
 6

 3
 7

7

10

11

77

14

1

0

8

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

5
data

3
M

U

X

H1

3

First half of cycle 4

21

11

Pipelining & Data Hazards
Avoidance
Detect and Stall
Detect and Forward

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

add

10

1

34

-2

nand add

21lw
 3

 6
 1

0

7

10

11

77

14

1

0

8

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

75 3
data

M

U

X

H2 H1

End of cycle 4
Pipelining & Data Hazards

Avoidance
Detect and Stall
Detect and Forward

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

add

10

1

34

-2

nand add

21lw
 3

 6
 1

0

7

10

11

77

14

1

0

8

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

75 3
data

M

U

X

H2 H1

First half of cycle 5

3

No Hazard

21

1

Pipelining & Data Hazards
Avoidance
Detect and Stall
Detect and Forward

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

lw

10

21

45

22

add nand

-2

sw
 6

 2
 1

2

7

21

11

77

14

1

0

8

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

7 5
data

M

U

X

H2 H1

6

End of cycle 5
Pipelining & Data Hazards

Avoidance
Detect and Stall
Detect and Forward

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

lw

10

21

45

22

add nand

-2

sw
 6

 2
 1

2

7

21

11

77

14

1

0

8

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

67 5

data

M

U

X

H2 H1

First half of cycle 6

Hazard

6

en

en

L

Pipelining & Data Hazards
Avoidance
Detect and Stall
Detect and Forward

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

5

31

lw add

22

sw
 6

 2
 1

2

7

21

11

-2

14

1

0

8

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

6 7
data

M

U

X

H2

End of cycle 6

noop

Pipelining & Data Hazards
Avoidance
Detect and Stall
Detect and Forward

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

noop

5

31

lw add

22

sw
 6

 2
 1

2

7

21

11

-2

14

1

0

8

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

6 7
data

M

U

X

H2

First half of cycle 7

Hazard

6

Pipelining & Data Hazards
Avoidance
Detect and Stall
Detect and Forward

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

sw

12

7

1

5

noop lw

99

7

21

11

-2

14

1

0

22

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

6
data

M

U

X

H3

End of cycle 7
Pipelining & Data Hazards

Avoidance
Detect and Stall
Detect and Forward

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

sw

12

7

1

5

noop lw

99

7

21

11

-2

14

1

0

8

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

6
data

M

U

X

H3

First half of cycle 8

99

12

Pipelining & Data Hazards
Avoidance
Detect and Stall
Detect and Forward

PC
Inst

mem

R
eg

is
te

r
fi

le
M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

M

U

X

111

sw

7

noop

7

21

11

-2

14

99

0

8

R2

R3

R4

R5

R1

R6

R0

R7

regA

regB

data

M

U

X

H3

End of cycle 8
Pipelining & Data Hazards

Avoidance
Detect and Stall
Detect and Forward

Pipeline function for BEQ

• Fetch: read instruction from memory

• Decode: read source operands from reg

• Execute: calculate target address and

test for equality

• Memory: Send target to PC if test is equal

• Writeback: Nothing left to do

Pipelining & Control Hazards

Control Hazards

beq 1 1 10

sub 3 4 5

F D E M W

F D E M W

t0 t1 t2 t3 t4 t5

beq

sub squash

Pipelining & Control Hazards

Handling Control Hazards

Avoidance (static)

– No branches?

– Convert branches to predication

• Control dependence becomes data dependence

Detect and Stall (dynamic)

– Stop fetch until branch resolves

Speculate and squash (dynamic)

– Keep going past branch, throw away instructions if

wrong

Pipelining & Control Hazards

Avoidance Via Predication

if (a == b) {

x++;

y = n / d;

}

sub t1  a, b

jnz t1, PC+2

add x  x, #1

div y  n, d

sub t1  a, b

add(!t1) x  x, #1

div(!t1) y  n, d

sub t1  a, b

add t2  x, #1

div t3  n, d

cmov(!t1) x  t2

cmov(!t1) y  t3

Pipelining & Control Hazards
Avoidance

Detect and Stall

Speculate and Squash

Handling Control Hazards:
Detect & Stall

Detection

– In decode, check if opcode is branch or jump

Stall

– Hold next instruction in Fetch

– Pass noop to Decode

Pipelining & Control Hazards
Avoidance

Detect and Stall

Speculate and Squash

PC Inst

mem

REG

file

M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

sign

ext

Control

bnz r1

Pipelining & Control Hazards
Avoidance

Detect and Stall

Speculate and Squash

Control Hazards

beq 1 1 10

sub 3 4 5

time

fetch decode execute memory writeback

fetch fetch fetch

beq

sub fetch

or

fetchTarget:

Pipelining & Control Hazards
Avoidance

Detect and Stall

Speculate and Squash

Problems with Detect & Stall

CPI increases on every branch

Are these stalls necessary? Not always!
– Branch is only taken half the time

– Assume branch is NOT taken

• Keep fetching, treat branch as noop

• If wrong, make sure bad instructions don’t
complete

Pipelining & Control Hazards
Avoidance

Detect and Stall

Speculate and Squash

Handling Control Hazards:
Speculate & Squash

Speculate “Not-Taken”

– Assume branch is not taken

Squash

– Overwrite opcodes in Fetch, Decode, Execute with

noop

– Pass target to Fetch

Pipelining & Control Hazards
Avoidance

Detect and Stall

Speculate and Squash

PC REG

file

M

U

XA

L

U

M

U

X

1

Data

memory

+
+

M

U

X

IF/

ID

ID/

EX

EX/

Mem

Mem/

WB

sign

ext

Control

equal

M

U

X

beq

sub

add

nand

a
d

d

su
b

b
eq

b
eq

Inst

mem

n
o

o
p

n
o

o
p

n
o

o
p

Pipelining & Control Hazards
Avoidance

Detect and Stall

Speculate and Squash

Problems with Speculate &
Squash

Always assumes branch is not taken

Can we do better? Yes.

– Predict branch direction and target!

– Why possible? Program behavior repeats.

More on branch prediction to come...

Pipelining & Control Hazards
Avoidance

Detect and Stall

Speculate and Squash

Branch Delay Slot (MIPS, SPARC)

F D E M W

F

F D E M

t0 t1 t2 t3 t4 t5

W

next:

target:

i: beq 1, 2, tgt

j: add 3, 4, 5 What can we put here?

branch:

F D E M W

F D E M W

F D E M W

delay:

target:

branch:

Squash

- Instruction in delay slot executes even on taken branch

Pipelining & Control Hazards
Branch Delay Slot

Improving pipeline
performance

• Add more stages

• Widen pipeline

Improving pipeline

performance

Adding pipeline stages

• Pipeline frontend

– Fetch, Decode

• Pipeline middle

– Execute

• Pipeline backend

– Memory, Writeback

Improving pipeline

performance

Adding stages to fetch,
decode

• Delays hazard detection

• No change in forwarding paths

• No performance penalty with respect to

data hazards

Improving pipeline

performance

Adding stages to execute

• Check for structural hazards

– ALU not pipelined

– Multiple ALU ops completing at same time

• Data hazards may cause delays

– If multicycle op hasn't computed data before

the dependent instruction is ready to execute

• Performance penalty for each stall

Improving pipeline

performance

Adding stages to memory,
writeback

• Instructions ready to execute may need to

wait longer for multi-cycle memory stage

• Adds more pipeline registers

– Thus more source registers to forward

• More complex hazard detection

• Wider muxes

• More control bits to manage muxes

Improving pipeline

performance

Wider pipelines

fetch decode execute mem WB

fetch decode execute mem WB

More complex hazard detection

• 2X pipeline registers to forward from

• 2X more instructions to check

• 2X more destinations (muxes)

• Need to worry about dependent

instructions in the same stage

Improving pipeline

performance

Making forwarding explicit

• add r1  r2, EX/Mem ALU result

– Include direct mux controls into the ISA

– Hazard detection is now a compiler task

– New micro-architecture leads to new ISA

• Is this why this approach always seems to fail?

(e.g., simple VLIW, Motorola 88k)

– Can reduce some resources

• Eliminates complex conflict checkers

