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Control Hazards and ILP

Lecture 3 – Fall 2024

Slides developed in part by Profs. Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, 
Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar, and Wenisch of Carnegie 
Mellon University, Purdue University, University of Michigan, University of 
Pennsylvania, and University of Wisconsin. 
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Announcements

• HW1 due Today @10pm

– I’ll be around after class to answer questions

• Project 1 due Tuesday 1/23.

– Note: can submit multiple times, only last one 

counts.

• Feedback is minimal. 

• New grader machine, could have issues. 

• HW2 posted early next week.
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Today

• Review and finish up control hazards. 

Examine other pipeline changes

• Costs and Power

• Instruction Level Parallelism (ILP) and 

Dynamic Execution
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Three approaches to 

handling data hazards

• Avoidance

– Make sure there are no hazards in the code

• Detect and Stall

– If hazards exist, stall the processor until they 
go away.

• Detect and Forward

– If hazards exist, fix up the pipeline to get the 
correct value (if possible)
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Problems with each solution

Avoidance (static)

– Predication 

• Needs larger instruction encodings

• If the branch body is long, lots of noops

• CMOV reduces encoding issues, but increases useless ops. 

Detect and Stall (dynamic)

– Stall on every branch

– Fair bit of hardware complexity

Speculate and squash (dynamic)

– Stall on every mispredicted branch

– More hardware complexity.

Pipelining & Control Hazards
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Avoidance Via Predication

if (a == b) {

x++;

y = n / d;

}

sub t1  a, b

jnz t1, PC+2

add x  x, #1

div y  n, d

sub t1  a, b

add(!t1)  x  x, #1

div(!t1)    y  n, d

sub t1  a, b

add    t2  x, #1

div t3  n, d

cmov(!t1) x  t2

cmov(!t1) y  t3
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Improving pipeline performance

• Add more stages

• Widen pipeline

7

Improving pipeline

performance
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Adding pipeline stages

• Pipeline frontend

– Fetch, Decode

• Pipeline middle

– Execute

• Pipeline backend

– Memory, Writeback

Improving pipeline

performance
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Adding stages to fetch, decode

• Delays hazard detection

• No change in forwarding paths

• No performance penalty with respect to 

data hazards

Improving pipeline

performance
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Adding stages to execute

• Check for structural hazards

– ALU not pipelined

– Multiple ALU ops completing at same time

• Data hazards may cause delays 

– If multicycle op hasn't computed data before 

the dependent instruction is ready to execute

• Performance penalty for each stall

Improving pipeline

performance
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Adding stages to memory, 

writeback

• Instructions ready to execute may need to 

wait longer for multi-cycle memory stage

• Adds more pipeline registers

– Thus more source registers to forward

• More complex hazard detection

• Wider muxes

• More control bits to manage muxes

Improving pipeline

performance
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Wider pipelines

fetch decode execute mem WB

fetch decode execute mem WB

More complex hazard detection

• 2X pipeline registers to forward from

• 2X more instructions to check

• 2X more destinations (muxes)

• Need to worry about dependent 

instructions in the same stage

Improving pipeline

performance
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Making forwarding explicit

• add  r1  r2, EX/Mem ALU result

– Include direct mux controls into the ISA

– Hazard detection is now a compiler task

– New micro-architecture leads to new ISA

• Is this why this approach always seems to fail?

(e.g., simple VLIW, Motorola 88k)

– Can reduce some resources

• Eliminates complex conflict checkers

Other pipelining

options
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Today

• Review and finish up control hazards. 

Examine other pipeline changes

• Costs and Power

• Instruction Level Parallelism (ILP) and 

Dynamic Execution

14



Portions © Austin, Brehob, Falsafi, Hill, Hoe,  Lipasti, Martin, 
Roth, Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

15

Digital System Cost

Cost is also a key design constraint

– Architecture is about trade-offs

– Cost plays a major role

Huge difference between Cost & Price

E.g.,

– Higher Price → Lower Volume → Higher Cost → Higher Price

– Direct Cost

– List vs. Selling Price

Price also depends on the customer

– College student vs. US Government

SupercomputerServersDesktopsPortablesEmbedded
$$$$$$$

The cost of computing…

$ and Watts
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Direct Cost

Cost distribution for a Personal Computer

– Processor board 37%

• CPU, memory, 

– I/O devices 37%

• Hard disk, DVD, monitor, …

– Software 20%

– Tower/cabinet 6%

Integrated systems account for a substantial 

fraction of cost

The cost of computing…

$ and Watts
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IC Cost Equation

Die cost + Test cost + Packaging cost

IC cost  = 

Final test yield

Wafer cost

Die cost = 

Dies/wafer x Die yield

Die yield = f(defect density, die area)

The cost of computing…

$ and Watts



Portions © Austin, Brehob, Falsafi, Hill, Hoe,  Lipasti, Martin, 
Roth, Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

Why is power a problem in a μP?

• Power used by the μP, vs. system power

• Dissipating Heat

– Melting (very bad)

– Packaging (to cool → $)

– Heat leads to poorer performance.

• Providing Power

– Battery

– Cost of electricity
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n

The cost of computing…

$ and Watts
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Where does the juice go in laptops?

• Others have measured ~55% processor increase under max 

load in laptops

The cost of computing…

$ and Watts

19
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Why worry about power dissipation?

Environment

Thermal issues: affect 
cooling, packaging, 

reliability, timing

Battery
life
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The cost of computing…

$ and Watts
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Power-Aware Computing Applications

Energy-Constrained Computing
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The cost of computing…

$ and Watts
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Today

• Review and finish up other options

• Costs and Power

• Instruction Level Parallelism (ILP) and 

Dynamic Execution

22
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Limitations of Scalar Pipelines

Upper Bound on Scalar Pipeline Throughput

Limited by IPC=1 “Flynn Bottleneck”

Performance Lost Due to Rigid In-order Pipeline

Unnecessary stalls

Exploiting ILP:

Basics

Measuring ILP

Dynamic execution  

23
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Terms

• Instruction parallelism

– Number of instructions being worked on

• Operation Latency

– The time (in cycles) until the result of an instruction is available 

for use as an operand in a subsequent instruction.  For example, if 

the result of an Add instruction can be used as an operand of an 

instruction that is issued in the cycle after the Add is issued, we 

say that the Add has an operation latency of one. 

• Peak IPC

– The maximum sustainable number of instructions that can be 

executed per clock. 

# Performance modeling for computer architects, C. M. Krishna

Exploiting ILP:

Basics

Measuring ILP

Dynamic execution  

24
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Architectures for Exploiting 

Instruction-Level Parallelism

Exploiting ILP:

Basics

Measuring ILP

Dynamic execution  

25
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Superscalar Machine

Exploiting ILP:

Basics

Measuring ILP

Dynamic execution  

26
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What is the real problem?
CPI of in-order pipelines degrades very sharply if the machine 

parallelism is increased beyond a certain point. 
i.e., when NxM approaches average distance between 
dependent instructions

Forwarding is no longer effective

Pipeline may never be full due to frequent dependency stalls!

Exploiting ILP:

Basics

Measuring ILP

Dynamic execution  

27
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Missed Speedup in 

In-Order Pipelines

What’s happening in cycle 4?

– mulf stalls due to RAW hazard

• OK, this is a fundamental problem

– subf stalls due to pipeline hazard

• Why? subf can’t proceed into D because mulf is there

• That is the only reason, and it isn’t a fundamental one

Why can’t subf go into D in cycle 4 and E+ in cycle 5?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

addf f0,f1,f2 F D E+ E+ E+ W

mulf f2,f3,f2 F D d* d* E* E* E* E* E* W

subf f0,f1,f4 F p* p* D E+ E+ E+ W

Exploiting ILP:

Basics

Measuring ILP

Dynamic execution  

28
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The Problem With 

In-Order Pipelines

• In-order pipeline

– Structural hazard: 1 insn register (latch) per stage

• 1 instruction per stage per cycle (unless pipeline is replicated)

• Younger instr. can’t “pass” older instr. without “clobbering” it

• Out-of-order pipeline

– Implement “passing” functionality by removing structural hazard

regfile

D$
I$

B
P

Exploiting ILP:

Basics

Measuring ILP

Dynamic execution  
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New Pipeline Terminology

• In-order pipeline

– Often written as F,D,X,W (multi-cycle X includes M)

– Variable latency

• 1-cycle integer (including mem)

• 3-cycle pipelined FP

regfile

D$
I$

B
P

Exploiting ILP:

Basics

Measuring ILP

Dynamic execution  
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ILP: 

Instruction-Level Parallelism
ILP is a measure of the amount of inter-dependencies between 

instructions 

Average ILP =no. instruction / no. cyc required

code1: ILP = 1

i.e. must execute serially

code2: ILP = 3

i.e. can execute at the same time

code1: r1  r2 + 1
r3  r1 / 17
r4  r0 - r3 

code2: r1  r2 + 1
r3  r9 / 17
r4  r0 - r10 

Exploiting ILP:

Basics

Measuring ILP

Dynamic execution  
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Purported Limits on ILP
Weiss and Smith [1984] 1.58

Sohi and Vajapeyam [1987] 1.81

Tjaden and Flynn [1970] 1.86

Tjaden and Flynn [1973] 1.96

Uht [1986] 2.00

Smith et al. [1989] 2.00

Jouppi and Wall [1988] 2.40

Johnson [1991] 2.50

Acosta et al. [1986] 2.79

Wedig [1982] 3.00

Butler et al. [1991] 5.8

Melvin and Patt [1991] 6

Wall [1991] 7

Kuck et al. [1972] 8

Riseman and Foster [1972] 51

Nicolau and Fisher [1984] 90

Exploiting ILP:

Basics

Measuring ILP

Dynamic execution  

32
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Scope of ILP Analysis

r1  r2 + 1
r3  r1 / 17
r4  r0 - r3
r11  r12 + 1
r13  r11 / 17
r14  r13 - r20 

ILP=2

ILP=1

Out-of-order execution exposes more ILP

ILP=1

Exploiting ILP:

Basics

Measuring ILP

Dynamic execution  

33
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How Large Must 

the “Window” Be?

Exploiting ILP:

Basics

Measuring ILP

Dynamic execution  

34
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Dynamic Scheduling –

OoO Execution

• Dynamic scheduling

– Totally in the hardware

– Also called “out-of-order execution” (OoO)

• Fetch many instructions into instruction window

– Use branch prediction to speculate past (multiple) branches

– Flush pipeline on branch misprediction

• Rename to avoid false dependencies (WAW and WAR)

• Execute instructions as soon as possible

– Register dependencies are known

– Handling memory dependencies more tricky (much more later)

• Commit instructions in order

– Any strange happens before commit, just flush the pipeline

• Current machines: 100+ instruction scheduling window

Exploiting ILP:

Basics

Measuring ILP

Dynamic execution  

35
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Motivation for 

Dynamic Scheduling

• Dynamic scheduling (out-of-order execution)

– Execute instructions in non-sequential order…

+ Reduce RAW stalls

+ Increase pipeline and functional unit (FU) utilization

– Original motivation was to increase FP unit utilization

+ Expose more opportunities for parallel issue (ILP)

– Not in-order → can be in parallel

– …but make it appear like sequential execution

• Important

– But difficult

• Next few lectures

Exploiting ILP:

Basics

Measuring ILP

Dynamic execution  

36
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regfile

D$
I$

B
P

insn buffer

SD

add p2,p3,p4

sub p2,p4,p5

mul p2,p5,p6

div p4,4,p7

Ready Table
P2 P3 P4 P5 P6 P7

Yes Yes

Yes Yes Yes

Yes Yes Yes Yes Yes

Yes Yes Yes Yes Yes Yes

div p4,4,p7

mul p2,p5,p6

sub p2,p4,p5

add p2,p3,p4

and

Dynamic Scheduling: The Big Picture

• Instructions fetch/decoded/renamed into Instruction Buffer

– Also called “instruction window” or “instruction scheduler”

• Instructions (conceptually) check ready bits every cycle

– Execute when ready  

t

37
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Going Forward: 

What’s Next

• We’ll build this up in steps over the next few weeks

– Register renaming to eliminate “false” dependencies

– “Tomasulo’s algorithm” to implement OoO execution

– Handling precise state and speculation

– Handling memory dependencies

• Let’s get started!

Exploiting ILP:

Basics

Measuring ILP

Dynamic execution  

38
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Dependency vs. Hazard

• A dependency exists independent of the 

hardware.

– So if Inst #1’s result is needed for Inst #1000 

there is a dependency

– It is only a hazard if the hardware has to deal 

with it.  

• So in our pipelined machine we only worried if 

there wasn’t a “buffer” of two instructions between 

the dependent instructions.

Dynamic execution  
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True Data dependencies

• True data dependency

– RAW – Read after Write

R1=R2+R3

R4=R1+R5

• True dependencies prevent reordering

– (Mostly) unavoidable

Dynamic execution

Hazards

Renaming  
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False Data Dependencies

• False or Name dependencies

– WAW – Write after Write
R1=R2+R3

R1=R4+R5

– WAR – Write after Read
R2=R1+R3

R1=R4+R5

• False dependencies prevent reordering
– Can they be eliminated? (Yes, with renaming!)

41

Dynamic execution

Hazards

Renaming  
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Data Dependency Graph: 

Simple example

R1=MEM[R2+0]  // A

R2=R2+4        // B

R3=R1+R4         // C

MEM[R2+0]=R3 // D

RAW          WAW         WAR 

Dynamic execution

Hazards

Renaming  
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Data Dependency Graph: 

More complex example
R1=MEM[R3+4]   // A

R2=MEM[R3+8]   // B

R1=R1*R2       // C

MEM[R3+4]=R1   // D

MEM[R3+8]=R1   // E

R1=MEM[R3+12]  // F

R2=MEM[R3+16]  // G

R1=R1*R2       // H

MEM[R3+12]=R1  // I

MEM[R3+16]=R1  // J
RAW          WAW         WAR 

Dynamic execution

Hazards

Renaming  
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Eliminating False Dependencies
R1=MEM[R3+4]   // A

R2=MEM[R3+8]   // B

R1=R1*R2       // C

MEM[R3+4]=R1   // D

MEM[R3+8]=R1   // E

R1=MEM[R3+12]  // F

R2=MEM[R3+16]  // G

R1=R1*R2       // H

MEM[R3+12]=R1  // I

MEM[R3+16]=R1  // J

• Well, logically there is no reason 
for F-J to be dependent on A-E.  
So…..

• ABFG

• CH

• DEIJ

– Should be possible.

• But that would cause either C or 
H to have the wrong reg inputs

• How do we fix this?
– Remember, the dependency is really 

on the name of the register

– So… change the register names!

Dynamic execution

Hazards

Renaming  
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Register Renaming Concept

– The register names are arbitrary

– The register name only needs to be consistent 

between writes.

R1= …..

…. = R1 ….

….= … R1

R1= ….

The value in R1 is “alive” from when the value is

written until the last read of that value.

Dynamic execution

Hazards

Renaming  
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So after renaming, what happens to the 

dependencies?
P1=MEM[R3+4]   //A

P2=MEM[R3+8]   //B

P3=P1*P2       //C

MEM[R3+4]=P3   //D

MEM[R3+8]=P3   //E

P4=MEM[R3+12]  //F

P5=MEM[R3+16]  //G

P6=P4*P5       //H

MEM[R3+12]=P6  //I

MEM[R3+16]=P6  //J

RAW          WAW         WAR 

Dynamic execution

Hazards

Renaming  
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Register Renaming Approach

• Every time an architected register is written we assign it to a physical 
register

– Until the architected register is written again, we continue to translate it 
to the physical register number

– Leaves RAW dependencies intact

• It is really simple, let’s look at an example:

– Names: r1,r2,r3

– Locations: p1,p2,p3,p4,p5,p6,p7

– Original mapping: r1→p1, r2→p2, r3→p3, p4–p7 are “free”

MapTable FreeList Orig. insns Renamed insns
r1 r2 r3

p1 p2 p3 p4,p5,p6,p7 add r2,r3,r1 add p2,p3,p4

p4 p2 p3 p5,p6,p7 sub r2,r1,r3 sub p2,p4,p5

p4 p2 p5 p6,p7 mul r2,r3,r3 mul p2,p5,p6

p4 p2 p6 p7 div r1,4,r1 div p4,4,p7

Dynamic execution

Hazards

Renaming  
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R1=MEM[P7+4]   // A

R2=MEM[R3+8]   // B

R1=R1*R2       // C

MEM[R3+4]=R1   // D

MEM[R3+8]=R1   // E

R1=MEM[R3+12]  // F

R2=MEM[R3+16]  // G

R1=R1*R2       // H

MEM[R3+12]=R1  // I

MEM[R3+16]=R1  // J

P1=MEM[R3+4]   

P2=MEM[R3+8]   

P3=P1*P2       

MEM[R3+4]=P3   

MEM[R3+8]=P3   

P4=MEM[R3+12]  

P5=MEM[R3+16]  

P6=P4*P5       

MEM[R3+12]=P6  

MEM[R3+16]=P6  

Arch V? Physical

1 1

2 1

3 1

Dynamic execution

Hazards

Renaming  
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Terminology

• There are a lot of terms and ideas in out-of-order processors.
 And because of lot of the work was done in parallel, there isn’t a 

standard set of names for things.

 Here we’ve called the table that maps the architected register to a 
physical register the “map table”.  That is probably the most 
common.

 I generally use Intel’s term “Register Alias Table” or RAT.  
 Also “rename table” isn’t an uncommon term for it.

• I try to use a mix of terminology in this class so that you can 
understand others when they are describing something…
 It’s not as bad as it sounds, but it is annoying at first.
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Register Renaming Hardware

• Really simple table (rename table)  

– Every time an instruction which writes a 

register is encountered assign it a new 

physical register number

• But there is some complexity

– When do you free physical registers?

Dynamic execution

Hazards

Renaming  


