
EECS 470

Branches:
Address prediction and recovery

(And interrupt recovery too.)

Lecture 6 – Winter 2024

Slides developed in part by Profs. Austin, Brehob, Falsafi, Hill, Hoe, Lipasti,
Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar, and Wenisch of Carnegie
Mellon University, Purdue University, University of Michigan, University of
Pennsylvania, and University of Wisconsin.

1

Announcements:
• Combining Branch Predictors, S.

McFarling, WRL Technical Note TN-36,

June 1993.

– On the website

– Part of HW2.

– Expect a (likely brief) question on the

midterm.

https://www.eecs.umich.edu/courses/eecs470/papers/McFarling.pdf

Last time:

• Started on branch predictors

– Branch prediction consists of

• Branch taken predictor

• Address predictor

• Mis-predict recovery.

– Discussed direction predictors and started

looking at some variations

Today

• Predictors
• Bimodal

• Local history predictor

• Global history predictor

• Gshare

• Tournament

– Do detailed example

• Start on the “P6 scheme”

What are the limitations of

Tomasulo’s Algorithm?
• Branches are a pain.

• Instructions that might throw an exception

are a pain.

Using history—bimodal

• 1-bit history (direction predictor)

– Remember the last direction for a branch

branchPC

NT T

Using history—bimodal

• 2-bit history (direction predictor)

branchPC

SN NT T ST

Using History Patterns

~80 percent of branches are either heavily

TAKEN or heavily NOT-TAKEN

For the other 20%, we need to look a

patterns of reference to see if they are

predictable using a more complex

predictor

Example: gcc has a branch that flips each time

T(1) NT(0) 10101010101010101010101010101010101010

Local history

branchPC

NT T

10101010

Pattern History

Table

Branch History

Table

What is the prediction

for this BHT 10101010?

When do I update the tables?

Local history

branchPC

NT T

01010101

Pattern History

Table

Branch History

Table

On the next execution of this

branch instruction, the branch

history table is 01010101,

pointing to a different pattern

What is the accuracy of a flip/flop branch 0101010101010…?

Global history

01110101

Pattern History

TableBranch History

Register

if (aa == 2)

aa = 0;

if (bb == 2)

bb = 0;

if (aa != bb) { …

How can branches interfere with each other?

Relative performance (Spec ‘89)

Gshare predictor

Ref: Combining Branch Predictors

branchPC

01110101

Pattern History

TableBranch History

Register
xor

Must read!

Hybrid predictors

Local predictor

(e.g. 2-bit)
Global/gshare predictor

(much more state)

Prediction

1
Prediction

2

Selection table

(2-bit state machine)

How do you select which predictor to use?

How do you update the various predictor/selector?

Prediction

“Trivial” example:

Tournament Branch Predictor

• Local

– 8-entry 3-bit local history table indexed by PC

– 8-entry 2-bit up/down counter indexed by local history

• Global

– 8-entry 2-bit up/down counter indexed by global history

• Tournament

– 8-entry 2-bit up/down counter indexed by PC

Tournament selector

00=local, 11=global

ADR[4:2] Pred. state

0 00

1 01

2 00

3 10

4 11

5 00

6 11

7 10

Local predictor 1st level

table (BHT) 0=NT, 1=T

ADR[4:2] History

0 001

1 101

2 100

3 110

4 110

5 001

6 111

7 101

Local predictor 2nd level table

(PHT) 00=NT, 11=T

History Pred. state

0 00

1 11

2 10

3 00

4 01

5 01

6 11

7 11

Global predictor table

00=NT, 11=T

History Pred. state

0 11

1 10

2 00

3 00

4 00

5 11

6 11

7 00

Branch

History

Register

Tournament selector

00=local, 11=global

ADR[4:2] Pred. state

0 00

1 01

2 00

3 10

4 11

5 00

6 11

7 10

Local predictor 1st level

table (BHT) 0=NT, 1=T

ADR[4:2] History

0 001

1 101

2 100

3 110

4 110

5 001

6 111

7 101

Local predictor 2nd level table

(PHT) 00=NT, 11=T

History Pred. state

0 00

1 11

2 10

3 00

4 01

5 01

6 11

7 11

Global predictor table

00=NT, 11=T

History Pred. state

0 11

1 10

2 00

3 00

4 00

5 11

6 11

7 00

• r1=2, r2=6, r3=10, r4=12, r5=4

• Address of joe =0x100 and each instruction is 4 bytes.

• Branch History Register = 110

joe: add r1 r2 r3

beq r3 r4 next

bgt r2 r3 skip // if r2>r3 branch

lw r6 4(r5)

add r6 r8 r8

skip: add r5 r2 r2

bne r4 r5 joe

next: noop

Overriding Predictors

• Big predictors are slow, but more accurate

• Use a single cycle predictor in fetch

• Start the multi-cycle predictor

– When it completes, compare it to the fast prediction.

• If same, do nothing

• If different, assume the slow predictor is right and flush

pipline.

• Advantage: reduced branch penalty for those

branches mispredicted by the fast predictor and

correctly predicted by the slow predictor

BTB
(Chapter 3.9)

• Branch Target Buffer

– Addresses predictor

– Lots of variations

• Keep the target of “likely taken” branches

in a buffer

– With each branch, associate the expected

target.

Branch PC Target address

0x05360AF0 0x05360000

… …

… …

… …

… …

… …

• BTB indexed by current PC

– If entry is in BTB fetch target address next

• Generally set associative (too slow as FA)

• Often qualified by branch taken predictor

So…

• BTB lets you predict target address during the
fetch of the branch!

• If BTB gets a miss, pretty much stuck with not-
taken as a prediction
– So limits prediction accuracy.

• Can use BTB as a predictor.
– If it is there, predict taken.

• Replacement is an issue
– LRU seems reasonable, but only really want

branches that are taken at least a fair amount.

• What branches will a BTB struggle with?
– How to address that?

Pipeline recovery is pretty simple

• Squash and restart fetch with right

address

– Just have to be sure that nothing has

“committed” its state yet.

• In our 5-stage pipe, state is only

committed during MEM (for stores) and

WB (for registers)

Tomasulo’s
• Recovery seems really hard

– What if instructions after the branch finish
after we find that the branch was wrong?

• This could happen. Imagine
R1=MEM[R2+0]

BEQ R1, R3 DONE  Predicted not taken

R4=R5+R6

– So we have to not speculate on branches or
not let anything pass a branch

• Which is really the same thing.

• Branches become serializing instructions.
– Note that can be executing some things before and

after the branch once branch resolves.

What we need is:

• Some way to not commit instructions until

all branches before it are committed.

– Just like in the pipeline, something could have

finished execution, but not updated anything

“real” yet.

Interrupts

• These have a similar problem.

– If we can execute out-of-order a “slower”

instruction might not generate an interrupt

until an instruction in front of it has finished.

• This sounds like the end of out-of-order

execution

– I mean, if we can’t finish out-of-order, isn’t this

pointless?

Exceptions and Interrupts

Exception Type Sync/Async Maskable? Restartable?

I/O request Async Yes Yes

System call Sync No Yes

Breakpoint Sync Yes Yes

Overflow Sync Yes Yes

Page fault Sync No Yes

Misaligned access Sync No Yes

Memory Protect Sync No Yes

Machine Check Async/Sync No No

Power failure Async No No

Precise Interrupts

• Implementation

approaches

– Don’t

• E.g., Cray-1

– Buffer speculative results

• E.g., P4, Alpha 21264

• History buffer

• Future file/Reorder buffer

Instructions

Completely

Finished

No Instruction

Has Executed

At All

PC

Precise State

Speculative State

MEM

Precise Interrupts via the Reorder Buffer

• @ Alloc
– Allocate result storage at Tail

• @ Sched
– Get inputs (ROB T-to-H then ARF)

– Wait until all inputs ready

• @ WB
– Write results/fault to ROB

– Indicate result is ready

• @ CT
– Wait until inst @ Head is done

– If fault, initiate handler

– Else, write results to ARF

– Deallocate entry from ROB

IF ID Alloc Sched EX

ROB

CT

Head Tail

PC

Dst regID

Dst value

Except?

• Reorder Buffer (ROB)
– Circular queue of spec state

– May contain multiple definitions
of same register

In-order In-order

Any order

ARF

Reorder Buffer Example

Code Sequence

f1 = f2 / f3

r3 = r2 + r3

r4 = r3 – r2

Initial Conditions

- reorder buffer empty

- f2 = 3.0

- f3 = 2.0

- r2 = 6

- r3 = 5

ROB

T
im

e
H T

regID: f1

result: ?

Except: ?

H T

regID: f1

result: ?

Except: ?

regID: r3

result: ?

Except: ?

H T

regID: f1

result: ?

Except: ?

regID: r3

result: 11

Except: N

regID: r4

result: ?

Except: ?

r3

regID: r8

result: 2

Except: n

regID: r8

result: 2

Except: n

regID: r8

result: 2

Except: n

Reorder Buffer Example

Code Sequence

f1 = f2 / f3

r3 = r2 + r3

r4 = r3 – r2

Initial Conditions

- reorder buffer empty

- f2 = 3.0

- f3 = 2.0

- r2 = 6

- r3 = 5

ROB

T
im

e
H T

regID: f1

result: ?

Except: ?

regID: r3

result: 11

Except: n

regID: r4

result: 5

Except: n

H T

regID: f1

result: ?

Except: y

regID: r3

result: 11

Except: n

regID: r4

result: 5

Except: n

regID: r8

result: 2

Except: n

regID: r8

result: 2

Except: n

H T

regID: f1

result: ?

Except: y

regID: r3

result: 11

Except: n

regID: r4

result: 5

Except: n

Reorder Buffer Example

Code Sequence

f1 = f2 / f3

r3 = r2 + r3

r4 = r3 – r2

Initial Conditions

- reorder buffer empty

- f2 = 3.0

- f3 = 2.0

- r2 = 6

- r3 = 5

ROB

T
im

e
H T

H T

first inst

of fault

handler

There is more complexity here

• Rename table needs to be cleared

– Everything is in the ARF

– Really do need to finish everything which was

before the faulting instruction in program order.

• What about branches?

– Would need to drain everything before the branch.

• Why not just squash everything that follows it?

And while we’re at it…

• Does the ROB replace the RS?

– Is this a good thing? Bad thing?

ROB

• ROB
– ROB is an in-order queue where instructions are placed.

– Instructions complete (retire) in-order

– Instructions still execute out-of-order

– Still use RS
• Instructions are issued to RS and ROB at the same time

• Rename is to ROB entry, not RS.

• When execute done instruction leaves RS

– Only when all instructions in before it in program order are
done does the instruction retire.

Adding a Reorder Buffer

Tomasulo Data Structures
(Timing Free Example)

Map Table
Reg Tag
r0

r1

r2

r3

r4

Reservation Stations (RS)
T FU busy op RoB T1 T2 V1 V2
1

2

3

4

5

CDB
T V

ARF
Reg V
r0

r1

r2

r3

r4

Instruction
r0=r1*r2

r1=r2*r3

Branch if r1=0

r0=r1+r1

r2=r2+1

Reorder Buffer (RoB)
RoB Number 0 1 2 3 4 5 6
Dest. Reg.

Value

Review Questions

• Could we make this work without a RS?

– If so, why do we use it?

• Why is it important to retire in order?

• Why must branches wait until retirement before

they announce their mispredict?

– Any other ways to do this?

More review questions

1. What is the purpose of the RoB?

2. Why do we have both a RoB and a RS?
– Yes, that was pretty much on the last page…

3. Misprediction

a) When to we resolve a mis-prediction?

b) What happens to the main structures (RS, RoB,
ARF, Rename Table) when we mispredict?

4. What is the whole purpose of OoO execution?

Can We Add Superscalar?

• Dynamic scheduling and multiple issue are orthogonal

– E.g., Pentium4: dynamically scheduled 5-way superscalar

– Two dimensions

• N: superscalar width (number of parallel operations)

• W: (number of reservation stations)

• What do we need for an N-by-W Tomasulo?

– RS: N tag/value w-ports (D), N value r-ports (S), 2N tag CAMs (W)

– Select logic: W→N priority encoder (S)

– MT: 2N read-ports (D), N write-ports (D)

– RF: 2N read-ports (D), N write-ports (W)

– CDB: N (W)

– Which are the expensive pieces?

Superscalar Select Logic

• Superscalar select logic: W→N priority encoder

– Somewhat complicated (N2 logW)

– Can simplify using different RS designs

• Split design

– Divide RS into N banks: 1 per FU?

– Implement N separate W/N→1 encoders

+ Simpler: N * logW/N

– Less scheduling flexibility

• FIFO design [Palacharla+]

– Can issue only head of each RS bank

+ Simpler: no select logic at all

– Less scheduling flexibility (but surprisingly not that bad)

