
EECS 470
Adding a RoB

Lecture 7 – Winter 2024

Slides developed in part by Profs. Austin, Brehob, Falsafi, Hill, Hoe, Lipasti,
Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar, and Wenisch of Carnegie
Mellon University, Purdue University, University of Michigan, University of
Pennsylvania, and University of Wisconsin.

Last time:

• Covered branch predictors

– Direction

• Bimodal, local history, global, gshare, tournament

– Address

• BTB

• RAS (briefly)

General speculation

• Control speculation
– “I think this branch will go to address 90004”

• Data speculation
– “I’ll guess the result of the load will be zero”

• Memory conflict speculation
– “I don’t think this load conflicts with any proceeding

store.”

• Error speculation
– “I don’t think there were any errors in this calculation”

Speculation in general

• Need to be 100% sure on final
correctness!

– So need a recovery mechanism

– Must make forward progress!

• Want to speed up overall performance

– So recovery cost should be low or expected
rate of occurrence should be low.

– There can be a real trade-off on accuracy,
cost of recovery, and speedup when correct.

• Should keep the worst case in mind…

MEM

Precise Interrupts and branches via the

Reorder Buffer

• @ Alloc
– Allocate result storage at Tail

• @ Sched
– Get inputs (ROB T-to-H then ARF)

– Wait until all inputs ready

• @ WB
– Write results/fault to ROB

– Indicate result is ready

• @ CT
– Wait until inst @ Head is done

– If fault, initiate handler

– Else, write results to ARF

– Deallocate entry from ROB

IF ID Alloc Sched EX

ROB

CT

Head Tail

PC

Dst regID

Dst value

Except?

• Reorder Buffer (ROB)
– Circular queue of spec state

– May contain multiple definitions
of same register

In-order In-order

Any order

ARF

Reorder Buffer Example

Code Sequence

f1 = f2 / f3

r3 = r2 + r3

r4 = r3 – r2

Initial Conditions

- reorder buffer empty

- f2 = 3.0

- f3 = 2.0

- r2 = 6

- r3 = 5

ROB

T
im

e
H T

regID: f1

result: ?

Except: ?

H T

regID: f1

result: ?

Except: ?

regID: r3

result: ?

Except: ?

H T

regID: f1

result: ?

Except: ?

regID: r3

result: 11

Except: N

regID: r4

result: ?

Except: ?

r3

regID: r8

result: 2

Except: n

regID: r8

result: 2

Except: n

regID: r8

result: 2

Except: n

Reorder Buffer Example

Code Sequence

f1 = f2 / f3

r3 = r2 + r3

r4 = r3 – r2

Initial Conditions

- reorder buffer empty

- f2 = 3.0

- f3 = 2.0

- r2 = 6

- r3 = 5

ROB

T
im

e
H T

regID: f1

result: ?

Except: ?

regID: r3

result: 11

Except: n

regID: r4

result: 5

Except: n

H T

regID: f1

result: ?

Except: y

regID: r3

result: 11

Except: n

regID: r4

result: 5

Except: n

regID: r8

result: 2

Except: n

regID: r8

result: 2

Except: n

H T

regID: f1

result: ?

Except: y

regID: r3

result: 11

Except: n

regID: r4

result: 5

Except: n

Reorder Buffer Example

Code Sequence

f1 = f2 / f3

r3 = r2 + r3

r4 = r3 – r2

Initial Conditions

- reorder buffer empty

- f2 = 3.0

- f3 = 2.0

- r2 = 6

- r3 = 5

ROB

T
im

e
H T

H T

first inst

of fault

handler

There is more complexity here

• Rename table needs to be cleared

– Everything is in the ARF

– Really do need to finish everything which was

before the faulting instruction in program order.

• What about branches?

– Would need to drain everything before the branch.

• Why not just squash everything that follows it?

And while we’re at it…

• Does the ROB replace the RS?

– Is this a good thing? Bad thing?

ROB

• ROB
– ROB is an in-order queue where instructions are placed.

– Instructions complete (retire) in-order

– Instructions still execute out-of-order

– Still use RS
• Instructions are issued to RS and ROB at the same time

• Rename is to ROB entry, not RS.

• When execute done instruction leaves RS

– Only when all instructions in before it in program order are
done does the instruction retire.

Adding a Reorder Buffer

Tomasulo Data Structures
(Timing Free Example, “P6 scheme”)

Map Table
Reg Tag
r0

r1

r2

r3

r4

Reservation Stations (RS)
T FU busy op RoB T1 T2 V1 V2
1

2

3

4

5

CDB
T V

ARF
Reg V
r0

r1

r2

r3

r4

Instruction
r0=r1*r2

r1=r2*r3

Branch if r1=0

r0=r1+r1

r2=r2+1

Reorder Buffer (RoB)
RoB Number 0 1 2 3 4 5 6
Dest. Reg.

Value

Review Questions

• Could we make this work without the RS?

– If so, why do we do that?

• Why is it important to retire in order?

• Why must branches wait until retirement before

they announce their mispredict?

– Any other ways to do this?

More review questions

1. What is the purpose of the RoB?

2. Why do we have both a RoB and a RS?
– Yes, that was pretty much on the last page…

3. Misprediction

a) When to we resolve a mis-prediction?

b) What happens to the main structures (RS, RoB,
ARF, Rename Table) when we mispredict?

4. What is the whole purpose of OoO execution?

And yet more review questions!

1. What is the purpose of the RoB?

2. Why do we have both a RoB and a RS?

3. Misprediction

a) When to we resolve a mis-prediction?

b) What happens to the main structures (RS, RoB,
ARF, Rename Table) when we mispredict?

4. What is the whole purpose of OoO execution?

When an instruction is dispatched how does

it impact each major structure?
• Rename table?

• ARF?

• RoB?

• RS?

When an instruction completes execution how

does it impact each major structure?
• Rename table?

• ARF?

• RoB?

• RS?

When an instruction retires how does it

impact each major structure?
• Rename table?

• ARF?

• RoB?

• RS?

Topic change

• Why on earth are we doing this?

– Why do we think it helps?

• Homework 2 problems 5 and 6 made the

argument.

– Only need to obey true data dependencies.

• Huge speedup potential.

Optimizing CPU Performance

• Golden Rule: tCPU = Ninst*CPI*tCLK

• Given this, what are our options

– Reduce the number of instructions executed

– Reduce the cycles to execute an instruction

– Reduce the clock period

• Our first focus: Reducing CPI

– Approach: Instruction Level Parallelism (ILP)

Why ILP?

Vs.

• Requirements

– Parallelism

– Large window

– Limited control deps

– Eliminate “false” deps

– Find run-time deps

How Much ILP is There?

(Chapter 3.10)

How Large Must the “Window” Be?

ALU Operation GOOD, Branch BAD

Expected Number of Branches

Between Mispredicts

E(X) ~ 1/(1-p)

E.g., p = 95%, E(X) ~ 20 brs, 100-ish insts

How Accurate are Branch Predictors?

Impact of Physical Storage Limitations

• Each instruction “in flight” must have storage for its
result

– Really worse than this because of mispeculation…

Registers GOOD, Memory BAD
• Benefits of registers

– Well described deps

– Fast access

– Finite resource

• Memory loses these benefits

for flexibility

*p = …

*q = …

… = *p
?

“Bottom Line” for an Ambitious Design

