
EECS 470
RS/ROB examples

True Physical Registers?

Project

Lecture 8 – Winter 2024

Slides developed in part by Profs. Austin, Brehob, Falsafi, Hill, Hoe, Lipasti,
Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar, and Wenisch of Carnegie
Mellon University, Purdue University, University of Michigan, University of
Pennsylvania, and University of Wisconsin.

Today

• RS/ROB

– A bit more detail

• True physical registers: Removing the ARF

– How and why

– Probably will only get started on this, we’ll see.

• Project discussion

– Help me to stop the above at 1pm.

Reminder

• In the original Tomasulo’s algorithm you

should only update the ARF if you

overwrite the data in the RAT.

• In the P6 scheme you always write to the

ARF.

Tomasulo Data Structures
(Timing Free Example, “P6 scheme”)

Map Table
Reg Tag
r0

r1

r2

r3

r4

Reservation Stations (RS)
T FU busy op RoB T1 T2 V1 V2
1

2

3

4

5

CDB
T V

ARF
Reg V
r0

r1

r2

r3

r4

Instruction
r0=r1*r2

r1=r2*r3

Branch if r1=0

r0=r1+r1

r2=r2+1

Reorder Buffer (RoB)
RoB Number 0 1 2 3 4 5 6
Dest. Reg.

Value

Review Questions

• Could we make this work without the RS?

– If so, why do we do that?

• Why is it important to retire in order?

• Why must branches wait until retirement

before they announce their mispredict?

– Any other ways to do this?

More review questions

1. What is the purpose of the RoB?

2. Why do we have both a RoB and a RS?
– Yes, that was pretty much on the last page…

3. Misprediction

a) When to we resolve a mis-prediction?

b) What happens to the main structures (RS,
RoB, ARF, Rename Table) when we
mispredict?

4. What is the whole purpose of OoO
execution?

And yet more review questions!

1. What is the purpose of the RoB?

2. Why do we have both a RoB and a RS?

3. Misprediction

a) When to we resolve a mis-prediction?

b) What happens to the main structures (RS,
RoB, ARF, Rename Table) when we
mispredict?

4. What is the whole purpose of OoO
execution?

When an instruction is dispatched how

does it impact each major structure?

• Rename table?

• ARF?

• RoB?

• RS?

When an instruction completes execution

how does it impact each major structure?

• Rename table?

• ARF?

• RoB?

• RS?

When an instruction retires how does it

impact each major structure?

• Rename table?

• ARF?

• RoB?

• RS?

Topic change

• Why on earth are we doing this?

– Why do we think it helps?

• Homework 2 problems 5 and 6 made the

argument.

– Only need to obey true data dependencies.

• Huge speedup potential.

Optimizing CPU Performance

• Golden Rule: tCPU = Ninst*CPI*tCLK

• Given this, what are our options

– Reduce the number of instructions executed

– Reduce the cycles to execute an instruction

– Reduce the clock period

• Our first focus: Reducing CPI

– Approach: Instruction Level Parallelism (ILP)

Why ILP?

Vs.

• Requirements

– Parallelism

– Large window

– Limited control deps

– Eliminate “false” deps

– Find run-time deps

How Much ILP is There?

(Chapter 3.10)

How Large Must the “Window”

Be?

ALU Operation GOOD, Branch

BAD

Expected Number of Branches

Between Mispredicts

E(X) ~ 1/(1-p)

E.g., p = 95%, E(X) ~ 20 brs, 100-ish insts

How Accurate are Branch Predictors?

Impact of Physical Storage Limitations

• Each instruction “in flight” must have
storage for its result

– Really worse than this because of
mispeculation…

Registers GOOD, Memory BAD
• Benefits of registers

– Well described deps

– Fast access

– Finite resource

• Memory loses these

benefits for flexibility

*p = …

*q = …

… = *p
?

“Bottom Line” for an Ambitious

Design

P6 reviewed

• Steps are:

– Dispatch to the OoO system

– Issue to functional units
• Wakeup

• Select

– Complete Execute

– Retire

We added a Reorder Buffer

Let’s lose the ARF! (R10K scheme)

• Why?
– Currently have two structures that may hold values

(ROB and ARF)

– Need to write back to the ARF after every instruction!

• Other motivations?
– ROB currently holds result (which needs to be

accessible to all) as well as other data (PC, etc.)
which does not.

• So probably two separate structures anyways

– Many ROB entry result fields are unused (stores,
branches)

Physical Register file

Version 1.0

• Keep a “Physical register file”

– If you want to get the ARF back you need to

use the RAT.

• But the RAT has speculative information in

it!

– We need to be able to undo the speculative

work!

• How?

How?

• Remove
– The value field of the ROB

– The whole ARF

• Add
– A “retirement RAT” (RRAT)

– A “Physical Register File” (PRF)

• Actions:
– When you finish executing, send data to the PRF

– When you retire, update the RRAT as if you were dispatching
and updating the RAT.

– (Other stuff we need to think about goes here.)

– On a mis-predict, update the RAT with the RRAT when
squashing.

RAT/RRAT Example

AR PR

0 1

1 2

2 3

3 4

4 10

Assembly

R1=R2*R3

R3=R1+R3

RAT

AR PR

0 1

1 2

2 3

3 4

4 10

RRAT

RAT/RRAT Example

AR PR

0 1

1 0

2 3

3 5

4 10

In-flight

Assembly

R1=R2*R3

R3=R1+R3

Renamed

P0=P3*P4

P5=P0+P4

RAT

AR PR

0 1

1 2

2 3

3 4

4 10

RRAT

This seems sorta okay but…

• There seem to be some problems

– When can I free a physical register?

– If I’m writing to the physical register file at

execute doesn’t that mean I committing at that

point?

– How do I squash instructions?

– How do I recover architected state in the

event of an exception?

Freedom

• Freeing the PRF
– How long must we keep each PRF entry?

• Until we are sure no one else will read it before the corresponding
Architected Register is again written.

• Once the instruction overwriting the Architected Register commits we
are certain safe.

– So free the PR when the instruction which overwrites it commits.

• In other words: when an instruction commits, it frees the PR it
overwrites in the RRAT.

• We could do better (?)
– The value is dead once it is no longer needed.

• Right now waiting until the AR is overwritten…

– Freeing earlier would reduce the number of PRs needed.

– But unclear how to do given speculation and everything else.

Sidebar

• One thing that must happen with the PRF

is that a “free list” must exist letting the

processor know which physical registers

are available.

– Maintaining these free lists can be a pain!

A: R1=MEM[R2+0]

B: R2=R3/R1

C: R3=R2+R0

D: Branch (if R1!=0)

E: R3=R1+R3

F: R3=R3+R0

G: R3=R3+19

H: R1=R7+R6

AR Target

0

1

2

3

AR Target

0 4

1 2

2 7

3 1

0 1 2 3 4 5 6 7 8 9
3 2 44 56 3 66 7 11 8 20

Resolving Branches Early:

A variation

• Keep a RAT copy for each branch in a RS!

– If mis-predict, can recover RAT quickly.

– Free lists also

Project Overview

• Grade breakdown
– 22 points: Basics

• Out-of-order and something works

– 20 points: Correctness
• Measured by how many tests you pass.

– 17 points: Advanced features

– 20 points: Performance
• Measured against your peers and previous semesters.

– 10 points: Analysis
• Measuring something interesting. Ideally the impact of an advanced

feature.

– 6 points: Documentation
• You’ll do this at the end, don’t worry about it now.

– 3 points: Milestone 1
• You’ll turn in some self-testing code. We’ll see if it does a good job.

– 2 points: Peer feedback
• Do it on time & take it seriously you’ll get these points.

Advanced features

• 17 points of advanced feature stuff.

– We suggest you consider one big thing in the core

and a few small things outside of the core.

• Superscalar execution (3-way*, arbitrary **)

• Simultaneous Multi-threading (SMT) ***

• Multi-core with a shared, coherent and consistent write-back

L2 cache. ***

• Exception handling?

• Early branch resolution (before the branch hits the head of

the RoB)

• Multi-path execution on low-confidence branches (this may

not help performance much…)

Non-core features

• Much of this we haven’t covered yet.

• Better caches

– Associative, longer cache lines, etc.

– Non-blocking caches

• Harder than it looks

• Better predictors

– Gshare, tournament, etc.

• Prefetching

Psuedo-core features

• Adding instructions

– Say cmov

• This probably involves rewriting at least one

benchmark.

• Checkers

– Tricky.

Wacky features

• Think of something interesting and run

with it.

– We’ve had weird schedulers for EX units and

other things..

Performance

• Simple measure of how long it takes to

finish a program.

– Doesn’t include flushing caches etc.

– Only get credit for right answers.

• If you don’t synthisize, we can’t know your clock

period, so few if any points here.

• You’d like to pick your features so you

double-dip.

– Hint: Prefetching instructions is good.

Analysis

• Think about what you want to measure.

– Impact of a better cache?

– How full your RoB is?

– How much your early branch resolution helps.

• Do a good job grabbing the data.

– Be sure you can distinguish testbenches that

are good for measuring performance vs.

those that are good for correctness!

Report

• Only thing to think about now is that we

like things which show us how a feature

works.

– So having your debug data be readable could

be handy.

Forming teams

• We’ll post a signup sheet for teams

tomorrow.

• Teams are groups of 5

– We may have one group of 6?

• We’ll finish about 5 minutes early on

Thursday to finish team formation.

