
EECS 470

R10K scheme, Tclk

Lecture 9 – Winter 2024

Slides developed in part by Profs. Austin, Brehob, Falsafi, Hill, Hoe, Lipasti,
Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar, and Wenisch of Carnegie
Mellon University, Purdue University, University of Michigan, University of
Pennsylvania, and University of Wisconsin.

Warning: Crazy times coming

• P3 is due on Sunday (2/9)

– It’s a lot of work (20 hours?)

• Proposal is due on Tuesday (2/13)

– It’s not a lot of work (1 hour?) to do the write-up, but you’ll need to meet

with your group and discuss things.

• Don’t worry too much about getting this right. You’ll be allowed to change.

Just a line in the sand. Will discuss on Friday (2/16).

• HW3 is due on Wednesday (2/14)

– It’s a fair bit of work (4 hours?)

– Answers will be posted right after it’s due, no late assignments!

Warning: Crazy times coming

• P3 is due on Sunday (2/9)

– It’s a lot of work (20 hours?)

• Proposal is due on Tuesday (2/13)

– It’s not a lot of work (1 hour?) to do the write-up, but you’ll need to meet

with your group and discuss things.

• Don’t worry too much about getting this right. You’ll be allowed to change.

Just a line in the sand. Will discuss on Friday (2/16).

• HW3 is due on Wednesday (2/14)

– It’s a fair bit of work (4 hours?)

– Answers will be posted right after it’s due, no late assignments!

• Midterm is on Thursday 2/15, 7-9pm

– Open book, open notes. No computers, phones, etc.

– Exam Q&A, Monday 2/12 7-8:30pm, Tuesday 6-8:30pm
• Print exams and bring them.

– Q&A in class Thursday 2/15

– Best way to study is look at old exams (on website)

• 15 minute group meetings on Friday 2/16 (rather than inlab)

Let’s lose the ARF!

• Why?
– Currently have two structures that may hold values

(ROB and ARF)

– Need to write back to the ARF after every instruction!

• Other motivations?
– ROB currently holds result (which needs to be

accessible to all) as well as other data (PC, etc.)
which does not.

• So probably two separate structures anyways

– Many ROB entry result fields are unused (stores,
branches)

Physical Register file

Version 1.0

• Keep a “Physical register file”

– If you want to get the ARF back you need to

use the RAT.

• But the RAT has speculative information in

it!

– We need to be able to undo the speculative

work!

• How?

How?

• Remove
– The value field of the ROB

– The whole ARF

• Add
– A “Retirement RAT1” (RRAT) that is updated by

retiring instructions the same way the RAT is by
issuing instructions

• Actions:
– When you finish execution, update the PRF as well as

the ROB (ROB just gets “done” message now)

– When you retire, update the RRAT

– (Other stuff we need to think about goes here.)

1http://www.ecs.umass.edu/ece/koren/ece568/papers/Pentium4.pdf

http://www.ecs.umass.edu/ece/koren/ece568/papers/Pentium4.pdf

Example

AR PR

0 1

1 2

2 3

3 4

4 10

Dispatch:

Assembly

R1=R2*R3

R3=R1+R3

RAT

AR PR

0 1

1 2

2 3

3 4

4 10

RRAT

Example

AR PR

0 1

1 0

2 3

3 5

4 10

In-flight

Assembly

R1=R2*R3

R3=R1+R3

Renamed

P0=P3*P4

P5=P0+P4

RAT

AR PR

0 1

1 2

2 3

3 4

4 10

RRAT

Resolving Branches

• RRAT

– On mispredict at head of queue copy

retirement RAT into RAT.

• Early resolution? (briefly)

– BRAT

• Keep a RAT copy for each branch in a RS!

– If mispredict can recover RAT quickly.

– ROB easy to fix, RS’s a bit harder.

Freedom

• Freeing the PRF
– How long must we keep each PRF entry?

• Until we are sure no one else will read it before the corresponding AR
is again written.

• Once the instruction overwriting the Arch. Register commits we are
certain safe.

– So free the PR when the instruction which overwrites it commits.

• In other words: when an instruction commits, Free the thing
overwritten in the RRAT.

• We could do better
– Freeing earlier would reduce the number of PRs needed.

– But unclear how to do given speculation and everything else.

Sidebar

• One thing that must happen with the PRF

as well as the RS is that a “free list” must

exist letting the processor know which

resources are available.

– Maintaining these free lists can be a pain!

• Let’s talk a bit about how one would do this.

R10K scheme

• What are we doing?

– Removing the ARF

– Removing the value field of the RoB.

– Adding a Physical Register File (~sum ARF

and RoB)

– Adding a Retirement RAT (RRAT)

A: R1=MEM[R2+0]

B: R2=R1/R3

C: R3=R2+R0

D: Branch (R1==0)

E: R3=R1+R3

F: R3=R3+R0

G: R3=R3+19

H: R1=R7+R6

AR Target

0

1

2

3

AR Target

0 4

1 2

2 7

3 1

0 1 2 3 4 5 6 7 8 9
3 2 44 55 3 66 7 11 8 20

Alternative option (v0.9?)

• Use “back pointers” instead of RRAT.

– Record, in the ROB, which value in the RAT

you overwrote.

• On commit, free that value (it will be the same as

the one you would have overwritten in the RAT!)

• On mispredict, “undo” each step in reverse order

(from tail to head).

– This gives same functionality as RRAT.

• Slower to handle mispredict that is at the head of

the RoB.

– But could in theory handle mispredict as

Optimizing CPU Performance

• Golden Rule: tCPU = Ninst*CPI*tCLK

• Given this, what are our options

– Reduce the number of instructions executed

– Reduce the cycles to execute an instruction

– Reduce the clock period

• Our first focus: Reducing CPI

– Approach: Instruction Level Parallelism (ILP)

tCLK
• Recall: tCPU = Ninst*CPI*tCLK

• What defines tCLK?
– Critical path latency (= logic + wire latency)

– Latch latency

– Clock skew

– Clock period design margins

• In current and future generation designs
– Wire latency becoming dominant latency of critical path

– Due to growing side-wall capacitance

– Brings a spatial dimension to architecture optimization

• E.g., How long are the wires that will connect these two
devices?

Determining the Latency of a

Wire

scale

shrinks

grows

But reality is worse…. (Fringe)

(from [Bakoglu89])

For Intel 0.25u

process

• W~=0.64

• T~=0.48

• H is around 0.9.

www.ee.bgu.ac.il/~Orly_lab/courses/Intro_Course/Slides/Lecture02-2-Wire.ppt

Moral of the “tCLK" story
• As we shrink wire delay starts to dominate

– Agarwal et. al. Clock Rate versus IPC: the End of the Road for

Conventional Microarchitectures, ISCA 2000

– d

And reducing the number of

instructions executed…

• Sorry, wrong class.

– Compilers can help with this (a lot in some
cases)

– So can ISA design, but usually not too
much.

– Making instructions too complex hurts ILP
and tCLK

• So on the whole reducing # of
instructions doesn’t look to be viable.

– So ILP would seem to be “where it’s at”

Optimizing CPU Performance

• Golden Rule: tCPU = Ninst*CPI*tCLK

• Given this, what are our options

– Reduce the number of instructions executed

– Reduce the cycles to execute an instruction

– Reduce the clock period

• Our first focus: Reducing CPI

– Approach: Instruction Level Parallelism (ILP)

BRAT

• Simple idea:

– When we mispredict we need to recover
things to the state when the branch finished
issuing.

• RAT:
– Just make a copy

– Free list is non-trivial

• RS
– Can we just make a copy?

• RoB
– Easy money.

Note: the literature usually calls this “map table checkpoints” or “branch stack” or some such. I find that unwieldy so BRAT or BMAP

will be used here. See “Checkpoint Processing and Recovery: Towards Scalable Large Instruction Window Processors” for

a nice overview of options on branch misprediction recovery.

RS1

RS2

RS3

RS4

AR Target

0 0

1 1

2 2

3 3

AR Target

0

1

2

3

PRF freelist:

Group formation

