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Warning: Crazy times coming

• P3 is due on Sunday (2/9)

– It’s a lot of work (20 hours?)

• Proposal is due on Tuesday (2/13)

– It’s not a lot of work (1 hour?) to do the write-up, but you’ll need to meet 

with your group and discuss things.

• Don’t worry too much about getting this right.  You’ll be allowed to change.  

Just a line in the sand.  Will discuss on Friday (2/16).

• HW3 is due on Wednesday (2/14)

– It’s a fair bit of work (4 hours?)

– Answers will be posted right after it’s due, no late assignments!
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• Midterm is on Thursday 2/15, 7-9pm

– Open book, open notes.  No computers, phones, etc.

– Exam Q&A, Monday 2/12 7-8:30pm, Tuesday 6-8:30pm
• Print exams and bring them.

– Q&A in class Thursday 2/15

– Best way to study is look at old exams (on website) 

• 15 minute group meetings on Friday 2/16 (rather than inlab)



Let’s lose the ARF!

• Why?
– Currently have two structures that may hold values 

(ROB and ARF)

– Need to write back to the ARF after every instruction!

• Other motivations?
– ROB currently holds result (which needs to be 

accessible to all) as well as other data (PC, etc.) 
which does not.

• So probably two separate structures anyways

– Many ROB entry result fields are unused (stores, 
branches) 



Physical Register file

Version 1.0

• Keep a “Physical register file”

– If you want to get the ARF back you need to 

use the RAT.

• But the RAT has speculative information in 

it!

– We need to be able to undo the speculative 

work!  

• How?



How?

• Remove 
– The value field of the ROB

– The whole ARF

• Add
– A “Retirement RAT1” (RRAT) that is updated by 

retiring instructions the same way the RAT is by 
issuing instructions

• Actions:
– When you finish execution, update the PRF as well as 

the ROB (ROB just gets “done” message now)

– When you retire, update the RRAT

– (Other stuff we need to think about goes here.)

1http://www.ecs.umass.edu/ece/koren/ece568/papers/Pentium4.pdf

http://www.ecs.umass.edu/ece/koren/ece568/papers/Pentium4.pdf


Example

AR PR
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1 2

2 3

3 4

4 10

Dispatch:

Assembly

R1=R2*R3

R3=R1+R3

RAT

AR PR
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Example

AR PR

0 1

1 0

2 3

3 5

4 10

In-flight

Assembly

R1=R2*R3

R3=R1+R3

Renamed

P0=P3*P4   

P5=P0+P4

RAT

AR PR

0 1

1 2

2 3

3 4

4 10

RRAT



Resolving Branches

• RRAT

– On mispredict at head of queue copy 

retirement RAT into RAT.

• Early resolution? (briefly)

– BRAT 

• Keep a RAT copy for each branch in a RS!

– If mispredict can recover RAT quickly.

– ROB easy to fix, RS’s a bit harder.  



Freedom

• Freeing the PRF
– How long must we keep each PRF entry?

• Until we are sure no one else will read it before the corresponding AR 
is again written.

• Once the instruction overwriting the Arch. Register commits we are 
certain safe.

– So free the PR when the instruction which overwrites it commits.  

• In other words: when an instruction commits, Free the thing 
overwritten in the RRAT.  

• We could do better
– Freeing earlier would reduce the number of PRs needed.

– But unclear how to do given speculation and everything else.



Sidebar

• One thing that must happen with the PRF 

as well as the RS is that a “free list” must 

exist letting the processor know which 

resources are available.  

– Maintaining these free lists can be a pain!

• Let’s talk a bit about how one would do this.



R10K scheme

• What are we doing?

– Removing the ARF

– Removing the value field of the RoB.

– Adding a Physical Register File (~sum ARF 

and RoB)

– Adding a Retirement RAT (RRAT)



A: R1=MEM[R2+0]

B: R2=R1/R3

C: R3=R2+R0

D: Branch (R1==0)

E: R3=R1+R3

F: R3=R3+R0

G: R3=R3+19

H: R1=R7+R6

AR Target
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2

3

AR Target

0 4

1 2

2 7

3 1

0 1 2 3 4 5 6 7 8 9
3 2 44 55 3 66 7 11 8 20



Alternative option (v0.9?)

• Use “back pointers” instead of RRAT.

– Record, in the ROB, which value in the RAT  

you overwrote.

• On commit, free that value (it will be the same as 

the one you would have overwritten in the RAT!)

• On mispredict, “undo” each step in reverse order 

(from tail to head).

– This gives same functionality as RRAT.

• Slower to handle mispredict that is at the head of 

the RoB.

– But could in theory handle mispredict as 



Optimizing CPU Performance

• Golden Rule: tCPU = Ninst*CPI*tCLK

• Given this, what are our options

– Reduce the number of instructions executed

– Reduce the cycles to execute an instruction

– Reduce the clock period

• Our first focus: Reducing CPI

– Approach: Instruction Level Parallelism (ILP)





tCLK
• Recall: tCPU = Ninst*CPI*tCLK

• What defines tCLK?
– Critical path latency (= logic + wire latency)

– Latch latency

– Clock skew

– Clock period design margins

• In current and future generation designs
– Wire latency becoming dominant latency of critical path

– Due to growing side-wall capacitance

– Brings a spatial dimension to architecture optimization

• E.g., How long are the wires that will connect these two 
devices?



Determining the Latency of a 

Wire

scale

shrinks

grows



But reality is worse…. (Fringe)

(from [Bakoglu89])

For Intel 0.25u 

process 

• W~=0.64

• T~=0.48

• H is around 0.9.

www.ee.bgu.ac.il/~Orly_lab/courses/Intro_Course/Slides/Lecture02-2-Wire.ppt



Moral of the “tCLK" story
• As we shrink wire delay starts to dominate 

– Agarwal et. al. Clock Rate versus IPC: the End of the Road for 

Conventional Microarchitectures, ISCA 2000 

– d



And reducing the number of 

instructions executed…

• Sorry, wrong class.

– Compilers can help with this (a lot in some 
cases)

– So can ISA design, but usually not too 
much.

– Making instructions too complex hurts ILP 
and tCLK

• So on the whole reducing # of 
instructions doesn’t look to be viable.

– So ILP would seem to be “where it’s at”
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BRAT

• Simple idea:

– When we mispredict we need to recover 
things to the state when the branch finished 
issuing.  

• RAT:
– Just make a copy

– Free list is non-trivial

• RS
– Can we just make a copy?

• RoB
– Easy money.

Note: the literature usually calls this “map table checkpoints” or “branch stack” or some such.  I find that unwieldy so BRAT or BMAP 

will be used here.  See “Checkpoint Processing and Recovery: Towards Scalable Large Instruction Window Processors” for 

a nice overview of options on branch misprediction recovery.



RS1

RS2

RS3

RS4

AR Target
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AR Target
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PRF freelist:



Group formation


