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Times and Dates and Places

• Exam Q&A
– Today 6-8 pm 1200 EECS

• In class on Thursday 

similar Q&A.

• One from yesterday

should be in the lecture

recordings by the end of

the day.

• Midterm Thursday 

7-9pm

– DOW 1010 and 1014

– Assignments posted 

shortly

• If you have a conflict or 

other issue, be sure we 

are aware of it.



A: R1=MEM[R2+0]

B: R2=R1/R3

C: R3=R2+R0

D: Branch (R1==0)

E: R3=R1+R3

F: R3=R3+R0

G: R3=R3+19

H: R1=R7+R6
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Alternative option (v0.9?)

• Use “back pointers” instead of RRAT.

– Record, in the ROB, which value in the RAT  

you overwrote.

• On commit, free that value (it will be the same as 

the one you would have overwritten in the RAT!)

• On mispredict, “undo” each step in reverse order 

(from tail to head).

– This gives same functionality as RRAT.

• Slower to handle mispredict that is at the head of 

the RoB.



R10K 

discussion
• What do the RAT entries point to?

• What do the RRAT entries point 

to?

• When do we write a value to the 

PRF?

• When do we write a value to the 

RRAT?

• What happens on a mispredict? 



What happens on… (R10K)

• Dispatch

• Execute Complete?

• Commit?

• Commit of a mispredicted branch?



Terminology and background

• Branch RAT (BRAT)

– “Branch Stack” used by MIPSR10K paper

• Retirement RAT (RRAT)

– Retirement Map table

– Architected Map table



Other little details

• We’ve largely ignored timing in this class.

– Focus on algorithm, not implementation.

• However, there are some timing issues to 

worry about.
– (btw, there are timing slides on the website. Don’t take them as “truth” 

for your project, merely one implementation).

– One issue is “ships passing in the night”

• When a dispatching instruction is dependent on 

data on the CDB in the same cycle.

• Add a MUX… (where?)



Optimizing CPU Performance

• Golden Rule: tCPU = Ninst*CPI*tCLK

• Given this, what are our options

– Reduce the number of instructions executed

– Reduce the cycles to execute an instruction

– Reduce the clock period

• Our first focus: Reducing CPI

– Approach: Instruction Level Parallelism (ILP)





tCLK (again)

• Recall: tCPU = Ninst*CPI*tCLK

• What defines tCLK?
– Critical path latency (= logic + wire latency)

– Latch latency

– Clock skew

– Clock period design margins

• In current and future generation designs
– Wire latency becoming dominant latency of critical path

– Due to growing side-wall capacitance

– Brings a spatial dimension to architecture optimization

• E.g., How long are the wires that will connect these two 
devices?



Wire delay vs gate delay

From https://www.sciencedirect.com/science/article/pii/B9780128009796000044

https://www.sciencedirect.com/science/article/pii/B9780128009796000044


Determining the Latency of a 

Wire

scale

shrinks

grows

Further reading: https://asic-soc.blogspot.com/2008/10/net-delay.html

https://asic-soc.blogspot.com/2008/10/net-delay.html




But reality is worse…. (Fringe)

(from [Bakoglu89])

For Intel 0.25u 

process 

• W~=0.64

• T~=0.48

• H is around 0.9.

www.ee.bgu.ac.il/~Orly_lab/courses/Intro_Course/Slides/Lecture02-2-Wire.ppt



And reducing the number of 

instructions executed…

• Sorry, wrong class.

– Compilers can help with this (a lot in some 
cases)

– So can ISA design, but making instructions 
too complex hurts ILP and tCLK

• Not clear there is a lot of room here for 
improvement.

• So on the whole reducing # of 
instructions doesn’t look to be viable.

– So ILP would seem to be “where it’s at”



Optimizing CPU Performance

• Golden Rule: tCPU = Ninst*CPI*tCLK

• Given this, what are our options

– Reduce the number of instructions executed

– Reduce the cycles to execute an instruction

– Reduce the clock period

• Our first focus: Reducing CPI

– Approach: Instruction Level Parallelism (ILP)





SuperScalar OoO

• Out-of-order and superscalar make for a nice 

combination

– The whole point of OoO is to find something to do.  

• Superscalar provides the resources to do it.

• Out-of-order scales pretty nicely

– Dependencies resolved at rename

– True dependencies dealt with already by rename and 

the general OoO model.

• So we’ve already done a lot of the work. 



But more to go

• To be superscalar one needs to be able to 

complete more than 1 instruction per cycle 

in a sustained way.

– This means fetch, rename, issue, execute, 

CDB broadcast and retire must all be able to 

do 2 instructions at once.

– It is mostly a matter of scale.



Fetch

• Performing more than one fetch seems 
straightforward.

– Just grab PC and PC+4

– It can be complicated by hardware restrictions
• Say the two instructions span a cacheline

– Branches also cause problems
• What if PC+4 is wrong?

– But as long as you can usually/often fetch two 
life is good.

• And we can add tricks to handle these problems
– Trace cache, multi-branch predictor, Icache annotations



Decode

• Just have two of them.

– For x86 or other CISC this might be 

unreasonable

• Trace cache or otherwise caching decoded 

instructions might help here.



Rename

• One change is we need more ports to the 
RAT.

• Other (bigger) issue is making sure 
dependencies inside of the group are dealt 
with.

• R1=…

• …=R1

– How do we handle this?
• Basically similar to “register forwarding” inside of 

the register file



Write 

Read

AW1

AW2

AR1a

AR1b

AR2a

AR2b

PW1

PW2

PR1a

PR1b

PR2a

PR2b

RAT

Situation: Two instructions (1 and 2) come in to the RAT.  RAT renames two source

registers per instruction (ARXa and ARXb) and allocates new PRF for two destination

locations.



Dispatch

• Need to be able to send more than one 

instruction to the RoB and RS per cycle

– Just more ports in RS and RoB.

– A bit more complexity with “Ships passing in 

the Night”.

– Read ports in PRF (R10K)

• Read ports in ARF/ROB (P6)



Wake-up/select

• We’ve already been allowing more than 

one instruction to go to an exec unit per 

cycle.

– No real change here.



Execute complete/CDB

• As two instructions need to be able to 

complete per cycle need more than one 

CDB.

– In general everyone has to listen to everyone

– Could try to partition CDBs but this is tricky.

– Makes RS’s bigger and probably slower.

• RoB needs yet more ports.



Commit

• In R10K this isn’t a big deal.

– But need to realize that more than one 

instruction at the head of the RoB is done 

(more ports) and must be able to complete 

them (maybe more ports)

– In P6, you’ve got to do more copies.

• Multiple read ports (RoB); multiple write ports 

(ARF)





LSQ issues

• Load/Store queue

– It is pretty tricky to get right.
• Send to LSQ at issue

• Does this replace the RS?  
– Maybe…

– Probably a Store (circular) queue and a load 
buffer

• Loads need to note which stores they care about 
– Ones that were there when the load issued

– Need to not get caught by “wrap around” of the store 
queue

• Loads need to check for what exactly?



So what to do?
• You have a lot of options on load launch

– Conservative
• Launch loads at the head of the LSQ (bad)

– Moderate
• Launch loads at when no conflicting/unknown stores exist in 

front of you (ok)

– Aggressive
• Launch loads ASAP, but fix if wrong.

• Lots of potential issues.
– Imagine you launched a load then solve it by forwarding.  What 

happens when the load returns?

• And store forwarding might be tricky.
– Can you identify the situation when you can forward? 

• If so, can you write verilog code for that?



Non-LSQ options

• Just launch loads from the RoB when they hit 

the head (easy/poor)

• As above, but prefetch the data into the cache 

ASAP.

– This might actually work well.  Probably need non-

direct-mapped cache though.

• Use RoB to track when load has no 

conflicting/unknown stores in front of it. 

– Seems annoying, might be easy.  Still poorish

performance.  





More details

• RS

– We’ve been doing generic RSs

– Could also dedicate groups of RSs to a single 
execution unit (or group of similar execution 
units).

• May make the RSs simpler

• Will result in needing more total RSs to get the 
same performance

• Everyone needs to listen to the CDB

• For the project, means you have a bunch of similar 
code.  Often a bad idea when fixing bugs. 



Reading the register file on the way 

to EX

• The idea is to not read the PRF or RoB or 
CDB for the value, only for the fact that 
the value is available.

• Grab the value on your way to the EX unit.

– Advantages
• No CDB broadcast of values

• Don’t need to look in the PRF/ARF/RoB for values 
on issue.

– Disadvantages
• Already slow Wake-up/select/dispatch now slower

– (But as we may be pipelining this anyways, not too bad). 



Back-to-Back dependent 

instructions

• What has to happen to get them to go 

back to back?

– Why is this hard?

– How is it solved in the real world?





Looking back

• Keep the big picture in mind

– OoO is about finding ILP.
– If you don’t need ILP don’t bother

• Why might you not need ILP?

– Application doesn’t need it

– TLP instead.

– In many ways this is about finding work to do 

while high-latency instructions run

• If you fix the memory problem, it isn’t clear that 

OoO makes any sense.



Looking back

• Renaming is distinct from OoO

– You can rename without OoO

• (Not obviously useful!)

– You can have OoO without renaming

• In fact the first OoO processor, CDC 6600 used 

scoreboarding which had no renaming but is out-

of-order.



Static vs. Dynamic reordering

• Some reordering is better done statically
– Have a global view 

– (infinite window)

– Have access to the original source
• May tell you about intent or even behavior.

– Array behavior may make load/store conflicts easy to identify.

– Regular code structures may lend themselves to 
optimal ordering

• Software pipelining

• Just a one-time compile cost.
– Saves power and hardware cost if reordering done in 

software!



Static vs. Dynamic

• Some things are better done dynamically

– Have live data 

• Worst case vs. actual case

– Load/Store ordering possible to get right without being 

paranoid about the worst case.

• Program behavior may change based on data set

– Branch prediction in particular

– Can speculate

• Static specifies program behavior.  Much harder to 

speculate in the complier.



Looking forward

• There is a LOT more to architecture than out-of-
order execution
– Memory

• If OoO is mostly about reordering around high-latency loads 
memory sounds important

– Power
• Modern processors are eating huge amounts of power and 

we can’t cool them.  So what can an architect do?

– Multi-processors
• One way to get performance is to have many processors 

working on a task.  

– Static reordering
• As noted, saves power over dynamic & might be able to use 

both together to get a nice impact.


