
EECS 470
Final touches on Out-of-Order execution

Review

Tclk

Superscalar

Looking back

Looking forward

Lecture 10 – Winter 2024

Slides developed in part by Profs. Austin, Brehob, Falsafi, Hill, Hoe, Lipasti,
Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar, and Wenisch of Carnegie
Mellon University, Purdue University, University of Michigan, University of
Pennsylvania, and University of Wisconsin.

Times and Dates and Places

• Exam Q&A
– Today 6-8 pm 1200 EECS

• In class on Thursday

similar Q&A.

• One from yesterday

should be in the lecture

recordings by the end of

the day.

• Midterm Thursday

7-9pm

– DOW 1010 and 1014

– Assignments posted

shortly

• If you have a conflict or

other issue, be sure we

are aware of it.

A: R1=MEM[R2+0]

B: R2=R1/R3

C: R3=R2+R0

D: Branch (R1==0)

E: R3=R1+R3

F: R3=R3+R0

G: R3=R3+19

H: R1=R7+R6

AR Target

0

1

2

3

AR Target

0 4

1 2

2 7

3 1

0 1 2 3 4 5 6 7 8 9
3 2 44 55 3 66 7 11 8 20

Alternative option (v0.9?)

• Use “back pointers” instead of RRAT.

– Record, in the ROB, which value in the RAT

you overwrote.

• On commit, free that value (it will be the same as

the one you would have overwritten in the RAT!)

• On mispredict, “undo” each step in reverse order

(from tail to head).

– This gives same functionality as RRAT.

• Slower to handle mispredict that is at the head of

the RoB.

R10K

discussion
• What do the RAT entries point to?

• What do the RRAT entries point

to?

• When do we write a value to the

PRF?

• When do we write a value to the

RRAT?

• What happens on a mispredict?

What happens on… (R10K)

• Dispatch

• Execute Complete?

• Commit?

• Commit of a mispredicted branch?

Terminology and background

• Branch RAT (BRAT)

– “Branch Stack” used by MIPSR10K paper

• Retirement RAT (RRAT)

– Retirement Map table

– Architected Map table

Other little details

• We’ve largely ignored timing in this class.

– Focus on algorithm, not implementation.

• However, there are some timing issues to

worry about.
– (btw, there are timing slides on the website. Don’t take them as “truth”

for your project, merely one implementation).

– One issue is “ships passing in the night”

• When a dispatching instruction is dependent on

data on the CDB in the same cycle.

• Add a MUX… (where?)

Optimizing CPU Performance

• Golden Rule: tCPU = Ninst*CPI*tCLK

• Given this, what are our options

– Reduce the number of instructions executed

– Reduce the cycles to execute an instruction

– Reduce the clock period

• Our first focus: Reducing CPI

– Approach: Instruction Level Parallelism (ILP)

tCLK (again)

• Recall: tCPU = Ninst*CPI*tCLK

• What defines tCLK?
– Critical path latency (= logic + wire latency)

– Latch latency

– Clock skew

– Clock period design margins

• In current and future generation designs
– Wire latency becoming dominant latency of critical path

– Due to growing side-wall capacitance

– Brings a spatial dimension to architecture optimization

• E.g., How long are the wires that will connect these two
devices?

Wire delay vs gate delay

From https://www.sciencedirect.com/science/article/pii/B9780128009796000044

https://www.sciencedirect.com/science/article/pii/B9780128009796000044

Determining the Latency of a

Wire

scale

shrinks

grows

Further reading: https://asic-soc.blogspot.com/2008/10/net-delay.html

https://asic-soc.blogspot.com/2008/10/net-delay.html

But reality is worse…. (Fringe)

(from [Bakoglu89])

For Intel 0.25u

process

• W~=0.64

• T~=0.48

• H is around 0.9.

www.ee.bgu.ac.il/~Orly_lab/courses/Intro_Course/Slides/Lecture02-2-Wire.ppt

And reducing the number of

instructions executed…

• Sorry, wrong class.

– Compilers can help with this (a lot in some
cases)

– So can ISA design, but making instructions
too complex hurts ILP and tCLK

• Not clear there is a lot of room here for
improvement.

• So on the whole reducing # of
instructions doesn’t look to be viable.

– So ILP would seem to be “where it’s at”

Optimizing CPU Performance

• Golden Rule: tCPU = Ninst*CPI*tCLK

• Given this, what are our options

– Reduce the number of instructions executed

– Reduce the cycles to execute an instruction

– Reduce the clock period

• Our first focus: Reducing CPI

– Approach: Instruction Level Parallelism (ILP)

SuperScalar OoO

• Out-of-order and superscalar make for a nice

combination

– The whole point of OoO is to find something to do.

• Superscalar provides the resources to do it.

• Out-of-order scales pretty nicely

– Dependencies resolved at rename

– True dependencies dealt with already by rename and

the general OoO model.

• So we’ve already done a lot of the work.

But more to go

• To be superscalar one needs to be able to

complete more than 1 instruction per cycle

in a sustained way.

– This means fetch, rename, issue, execute,

CDB broadcast and retire must all be able to

do 2 instructions at once.

– It is mostly a matter of scale.

Fetch

• Performing more than one fetch seems
straightforward.

– Just grab PC and PC+4

– It can be complicated by hardware restrictions
• Say the two instructions span a cacheline

– Branches also cause problems
• What if PC+4 is wrong?

– But as long as you can usually/often fetch two
life is good.

• And we can add tricks to handle these problems
– Trace cache, multi-branch predictor, Icache annotations

Decode

• Just have two of them.

– For x86 or other CISC this might be

unreasonable

• Trace cache or otherwise caching decoded

instructions might help here.

Rename

• One change is we need more ports to the
RAT.

• Other (bigger) issue is making sure
dependencies inside of the group are dealt
with.

• R1=…

• …=R1

– How do we handle this?
• Basically similar to “register forwarding” inside of

the register file

Write

Read

AW1

AW2

AR1a

AR1b

AR2a

AR2b

PW1

PW2

PR1a

PR1b

PR2a

PR2b

RAT

Situation: Two instructions (1 and 2) come in to the RAT. RAT renames two source

registers per instruction (ARXa and ARXb) and allocates new PRF for two destination

locations.

Dispatch

• Need to be able to send more than one

instruction to the RoB and RS per cycle

– Just more ports in RS and RoB.

– A bit more complexity with “Ships passing in

the Night”.

– Read ports in PRF (R10K)

• Read ports in ARF/ROB (P6)

Wake-up/select

• We’ve already been allowing more than

one instruction to go to an exec unit per

cycle.

– No real change here.

Execute complete/CDB

• As two instructions need to be able to

complete per cycle need more than one

CDB.

– In general everyone has to listen to everyone

– Could try to partition CDBs but this is tricky.

– Makes RS’s bigger and probably slower.

• RoB needs yet more ports.

Commit

• In R10K this isn’t a big deal.

– But need to realize that more than one

instruction at the head of the RoB is done

(more ports) and must be able to complete

them (maybe more ports)

– In P6, you’ve got to do more copies.

• Multiple read ports (RoB); multiple write ports

(ARF)

LSQ issues

• Load/Store queue

– It is pretty tricky to get right.
• Send to LSQ at issue

• Does this replace the RS?
– Maybe…

– Probably a Store (circular) queue and a load
buffer

• Loads need to note which stores they care about
– Ones that were there when the load issued

– Need to not get caught by “wrap around” of the store
queue

• Loads need to check for what exactly?

So what to do?
• You have a lot of options on load launch

– Conservative
• Launch loads at the head of the LSQ (bad)

– Moderate
• Launch loads at when no conflicting/unknown stores exist in

front of you (ok)

– Aggressive
• Launch loads ASAP, but fix if wrong.

• Lots of potential issues.
– Imagine you launched a load then solve it by forwarding. What

happens when the load returns?

• And store forwarding might be tricky.
– Can you identify the situation when you can forward?

• If so, can you write verilog code for that?

Non-LSQ options

• Just launch loads from the RoB when they hit

the head (easy/poor)

• As above, but prefetch the data into the cache

ASAP.

– This might actually work well. Probably need non-

direct-mapped cache though.

• Use RoB to track when load has no

conflicting/unknown stores in front of it.

– Seems annoying, might be easy. Still poorish

performance.

More details

• RS

– We’ve been doing generic RSs

– Could also dedicate groups of RSs to a single
execution unit (or group of similar execution
units).

• May make the RSs simpler

• Will result in needing more total RSs to get the
same performance

• Everyone needs to listen to the CDB

• For the project, means you have a bunch of similar
code. Often a bad idea when fixing bugs.

Reading the register file on the way

to EX

• The idea is to not read the PRF or RoB or
CDB for the value, only for the fact that
the value is available.

• Grab the value on your way to the EX unit.

– Advantages
• No CDB broadcast of values

• Don’t need to look in the PRF/ARF/RoB for values
on issue.

– Disadvantages
• Already slow Wake-up/select/dispatch now slower

– (But as we may be pipelining this anyways, not too bad).

Back-to-Back dependent

instructions

• What has to happen to get them to go

back to back?

– Why is this hard?

– How is it solved in the real world?

Looking back

• Keep the big picture in mind

– OoO is about finding ILP.
– If you don’t need ILP don’t bother

• Why might you not need ILP?

– Application doesn’t need it

– TLP instead.

– In many ways this is about finding work to do

while high-latency instructions run

• If you fix the memory problem, it isn’t clear that

OoO makes any sense.

Looking back

• Renaming is distinct from OoO

– You can rename without OoO

• (Not obviously useful!)

– You can have OoO without renaming

• In fact the first OoO processor, CDC 6600 used

scoreboarding which had no renaming but is out-

of-order.

Static vs. Dynamic reordering

• Some reordering is better done statically
– Have a global view

– (infinite window)

– Have access to the original source
• May tell you about intent or even behavior.

– Array behavior may make load/store conflicts easy to identify.

– Regular code structures may lend themselves to
optimal ordering

• Software pipelining

• Just a one-time compile cost.
– Saves power and hardware cost if reordering done in

software!

Static vs. Dynamic

• Some things are better done dynamically

– Have live data

• Worst case vs. actual case

– Load/Store ordering possible to get right without being

paranoid about the worst case.

• Program behavior may change based on data set

– Branch prediction in particular

– Can speculate

• Static specifies program behavior. Much harder to

speculate in the complier.

Looking forward

• There is a LOT more to architecture than out-of-
order execution
– Memory

• If OoO is mostly about reordering around high-latency loads
memory sounds important

– Power
• Modern processors are eating huge amounts of power and

we can’t cool them. So what can an architect do?

– Multi-processors
• One way to get performance is to have many processors

working on a task.

– Static reordering
• As noted, saves power over dynamic & might be able to use

both together to get a nice impact.

