
EECS 470

Cache overview

4 Hierarchy questions

More on Locality

Lecture 11 & 12:
Caches – Winter 2024

Slides developed in part by Profs. Austin, Brehob, Falsafi, Hill, Hoe, Lipasti,
Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar, and Wenisch of Carnegie
Mellon University, Purdue University, University of Michigan, University of
Pennsylvania, and University of Wisconsin.

Class project

• Project restrictions

– The I-cache and D-cache size is limited to the size it has in what

we gave you.

– Can’t have more CDBs then degree of super scalarness.

– Must use our multiplier (P2)

• Milestone 1:

• It is due on Tues 3/5

• Should have high-level design done ASAP.

• Module you hand in should be:

– Self testing, well written.

• Be aware of sample (single) RS on the website.

Memory pyramid

Disk (Many GB)

Memory (128MB – fewGB)

L2 Cache (½-32MB)

L1 Cache

(several KB)

Reg

100s bytes

Cache Design 101

1 cycle access (early in pipeline)

1-4 cycle access

6-15 cycle access

100-500 cycle access

Millions cycle access!

Cache1

• 1 a : a hiding place especially for

concealing and preserving provisions or

implements

b : a secure place of storage

• 3 : a computer memory with very short

access time used for storage of

frequently used instructions or data --

called also cache memory

1From Merriam-Webster on-line

Cache overview

Locality of Reference

• Principle of Locality:

– Programs tend to reuse data and instructions near those they

have used recently.

– Temporal locality: recently referenced items are likely to be

referenced in the near future.

– Spatial locality: items with nearby addresses tend to be

referenced close together in time.
sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

*v = sum;
Locality in Example:

• Data

–Reference array elements in succession (spatial)

• Instructions

–Reference instructions in sequence (spatial)

–Cycle through loop repeatedly (temporal)

Caching: The Basic

Idea

• Main Memory

– Stores words

A–Z in example

• Cache

– Stores subset of the words

4 in example

– Organized in lines

• Multiple words

• To exploit spatial locality

• Access

– Word must be in cache for

processor to access

Big, Slow Memory

A

B

C
•

•

•

Y

Z

Small,

Fast Cache

A

B

G

H

Processor

Direct-mapped cache

29

123

150
162

18

33

19

210

00000

00010

00100

00110

01000

01010

01100

01110

10000

10010

10100

10110

11000

11010

11100

11110

Cache

V d tag data

Memory

78

120

71

173

21

28

200

225

0

0
0

0

Address

01101 218

44

141
28

33

181

119

66

23

10

16

214

98

129

42

74

Block Offset (1-bit)

Line Index (2-bit)

Tag (2-bit)

Compulsory Miss: first reference to memory block

Capacity Miss: Working set doesn’t fit in cache

Conflict Miss: Working set maps to same cache line

3-C’s

Cache overview

2-way set associative cache

29

123

150
162

18

33

19

210

00000

00010

00100

00110

01000

01010

01100

01110

10000

10010

10100

10110

11000

11010

11100

11110

Cache

V d tag data

Memory

78

120

71

173

21

28

200

225

0

0
0

0

Address

01101 218

44

141
28

33

181

119

66

23

10

16

214

98

129

42

74

Block Offset (unchanged)

1-bit Set Index

Larger (3-bit) Tag

Impact on the 3C’s?

Cache overview

Parameters

• Total cache size

– (block size # sets associativity)

• Associativity (Number of “ways”)

• Block size (bytes per block)

• Number of sets

Cache overview

• Performance Measures
– Miss rate

• % of memory refereces which are not found in the cache.

• A related measure is #misses per 1000 instructions

– Average memory access time
• MR*TMiss + (1-MR)* THit

– THit & TMiss --Access time for a hit or miss

• But what do we want to measure?
– Impact on program execution time.

• What are some flaws of using
– Miss Rate?

– Ave. Memory Access Time?

– Program execution time?

– Misses per 1000 instructions?

Cache overview

Effects of Varying Cache Parameters

• Total cache size?

– Positives:

• Should decrease miss rate

– Negatives:

• May increase hit time

• Increased area requirements

• Increased power (mainly static)

– Interesting paper:

» Krisztián Flautner, Nam Sung Kim, Steve Martin,

David Blaauw, Trevor N. Mudge: Drowsy Caches:

Simple Techniques for Reducing Leakage Power.

ISCA 2002: 148-157

Cache overview

Effects of Varying Cache Parameters

• Bigger block size?

– Positives:

• Exploit spatial locality ; reduce compulsory misses

• Reduce tag overhead (bits)

• Reduce transfer overhead (address, burst data mode)

– Negatives:

• Fewer blocks for given size; increase conflict misses

• Increase miss transfer time (multi-cycle transfers)

• Wasted bandwidth for non-spatial data

Cache overview

Effects of Varying Cache Parameters

• Increasing associativity

– Positives:

• Reduces conflict misses

• Low-assoc cache can have pathological behavior (very

high miss)

– Negatives:

• Increased hit time

• More hardware requirements (comparators, muxes,

bigger tags)

• Minimal improvements past 4- or 8- way.

Cache overview

Effects of Varying Cache Parameters

• Replacement Strategy: (for associative caches)

– LRU: intuitive; difficult to implement with high assoc; worst

case performance can occur (N+1 element array)

– Random: Pseudo-random easy to implement; performance

close to LRU for high associativity

– Optimal: replace block that has next reference farthest in the

future; hard to implement (need to see the future) ☺

Cache overview

Effects of Varying Cache Parameters

• Write Policy: How to deal with write misses?

– Write-through / no-allocate

• Total traffic? Read misses block size + writes

• Common for L1 caches back by L2 (esp. on-chip)

– Write-back / write-allocate

• Needs a dirty bit to determine whether cache data differs

• Total traffic? (read misses + write misses) block size +

dirty-block-evictions block size

• Common for L2 caches (memory bandwidth limited)

– Variation: Write validate

• Write-allocate without fetch-on-write

• Needs sub-block cache with valid bits for each word/byte

4 Hierarchy questions

• Where can a block be placed?

• How do you find a block (and know you’ve

found it)?

• Which block should be replaced on a miss?

• What happens on a write?

Cache overview

So from here…

• We need to think in terms of both the

hierarchy questions as well as

performance.

– We often will use Average Access Time as a

predictor of the impact on execution time. But

we will try to keep in mind they may not be the

same thing!

• Even all these questions don’t get at

everything!

Cache overview

Set Associative as a change

from Direct Mapped

• Impact of being more associative?

– MR? TMiss? THit?

• Hierarchy questions:

– Where can a block be placed?

– How do you find a block (and know you’ve

found it)?

– Which block should be replaced on a miss?

– What happens on a write?

4 Hierarchy

questions

Hash cache
• Idea:

– Grab some bits from the tag and use them, as well as
the old index bits, to select a set.

– Simplest version would be if N sets, grab the 2N
lowest order bits after the offset and XOR them in
groups of 2.

• Impact:
– Impact of being more associative?

• MR? TMiss? THit?

– Hierarchy questions:
• Where can a block be placed?

• How do you find a block (and know you’ve found it)?

• Which block should be replaced on a miss?

• What happens on a write?

4 Hierarchy

questions

Skew cache

• Idea:

– As hash cache but a different and independent

hashing function is used for each way.

• Impact:

– Impact of being more associative?

• MR? TMiss? THit?

– Hierarchy questions:

• Where can a block be placed?

• How do you find a block (and know you’ve found it)?

• Which block should be replaced on a miss?

• What happens on a write?

4 Hierarchy

questions

Victim cache

• Idea:
– A small fully-associative cache (4-8 lines typically)

that is accessed in parallel with the main cache. This
victim cache is managed as if it were an L2 cache
(even though it is as fast as the main L1 cache).

• Impact:
– Impact of being more associative?

• MR? TMiss? THit?

– Hierarchy questions:
• Where can a block be placed?

• How do you find a block (and know you’ve found it)?

• Which block should be replaced on a miss?

• What happens on a write?

4 Hierarchy

questions

WHAT’S HARD ABOUT

IMPLEMENTING CACHES?

So…

• What’s hard about caches?

– And in particular, for the project?

• There are a lot of implementation details that get

tricky

– LRU is tricky to do above 2 way

– Critical word first

• less important for the project, but a real issue.

– Making a non-blocking cache is tricky

– Writes are tricky

– Dealing with load/store dependencies

– Multi-processor issues

Difficult things with caches

Critical Word First

• Idea:

– For caches where the line size is greater than the word size,

send the word which causes the miss first

• Why?

– As always, the processor is what matters.

– We are getting extra data (cache line) into the cache to handle

future requests

– But we want to get the current request handled as quickly as

possible.

• What’s hard?

– Memory system needs to support this.

– We need to take an action while the data is still arriving.

Difficult things with caches:

Critical Word First

LRU is difficult

• We want to keep track of the exact order

things have been used in the set.

– So if I have 4 things, I want to know the MRU,

the next MRU, etc.

• I could maintain a stack-like structure

– But that’s a lot of data movement.

• I could maintain a counter for each line

– But that’s a lot of work and area (why area?)

• No good way to track LRU?

– Something smart?

Difficult things with caches:

LRU

Pseudo-LRU replacement

• # of bits needed to maintain order among

N items?

• So for N=16 we need: ____ bits.

• Any better ideas?

45

Difficult things with caches:

LRU

Psuedo LRU

Way 0 Way 1 Way 2 Way 3

General theme:

On a hit or replacement, switch all the bits to point away

from you.

Replace the one pointed to.

0

0 0

1

11

Difficult things with caches:

LRU

Handling Multiple Outstanding Accesses

• Question: If the processor can generate multiple cache
accesses, can the later accesses be handled while a
previous miss is outstanding?

• Goal: Enable cache access when there is a pending miss

• Goal: Enable multiple misses in parallel

– Memory-level parallelism (MLP)

• Solution: Non-blocking or lockup-free caches

– Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache Organization,"
ISCA 1981.

This section from Dr. Onur Mutlu

Difficult things with caches:

Non-blocking caches

Handling Multiple Outstanding Accesses

• Idea: Keep track of the status/data of misses that
are being handled in Miss Status Handling
Registers (MSHRs)

– A cache access checks MSHRs to see if a miss to the
same block is already pending.
• If pending, a new request is not generated

• If pending and the needed data available, data forwarded to
later load

– Requires buffering of outstanding miss requests

Difficult things with caches:

Non-blocking caches

Miss Status Handling Register

• Also called “miss buffer”

• Keeps track of

– Outstanding cache misses

– Pending load/store accesses that refer to the missing cache block

• Fields of a single MSHR entry

– Valid bit

– Cache block address (to match incoming accesses)

– Control/status bits (prefetch, issued to memory, which subblocks
have arrived, etc)

– Data for each subblock

– For each pending load/store

• Valid, type, data size, byte in block, destination register or store buffer
entry address

Difficult things with caches:

Non-blocking caches

MSHR Operation
• On a cache miss:

– Search MSHRs for a pending access to the same block

• Found: Allocate a load/store entry in the same MSHR entry

• Not found: Allocate a new MSHR

• No free entry: stall

• When a subblock returns from the next level in
memory

– Check which loads/stores waiting for it

• Forward data to the load/store unit

• De-allocate load/store entry in the MSHR entry

– Write subblock in cache or MSHR

– If last subblock, de-allaocate MSHR (after writing the
block in cache)

31

Difficult things with caches:

Non-blocking caches

Non-Blocking Cache Implementation

• When to access the MSHRs?

– In parallel with the cache?

– After cache access is complete?

• MSHRs need not be on the critical path of hit
requests

– Which one below is the common case?

• Cache miss, MSHR hit

• Cache hit

Difficult things with caches:

Non-blocking caches

Miss Status Handling Register Entry

Difficult things with caches:

Non-blocking caches

So…

• What’s hard about caches?

– And in particular, for the project?

• There are a lot of implementation details that get

tricky

– LRU is tricky to do above 2 way

– Critical word first

• less important for the project, but a real issue.

– Making a non-blocking cache is tricky

– Writes are tricky

– Dealing with load/store dependencies

– Multi-processor issues

Difficult things with caches

3C’s model

• Break cache misses into three categories
– Compulsory miss

– Capacity miss

– Conflict miss

• Compulsory
– The block in question had never been accessed

before.

• Capacity
– A fully-associative cache of the same size would also

have missed this access given the same reference
stream.

• Conflict
– That fully-associative cache would have gotten a hit.

3C’s example

• Consider the “stream” of blocks 0, 1, 2, 0,

2, 1

– Given a direct-mapped cache with 2 lines,

which would hit, which would miss?

– Classify each type of miss.

3C’s – sum-up.

• What’s the point?

– Well, if you can figure out what kind of misses

you are getting, you might be able to figure

out how to solve the problem.

• How would you “solve” each type?

• What are the problems?

Reference stream

• A memory reference stream is an n-tuple

of addresses which corresponds to n

ordered memory accesses.

– A program which accesses memory locations

4, 8 and then 4 again would be represented

as (4,8,4).

Locality of reference

• The reason small caches get such a good hit-rate is that

the memory reference steam is not random.

– A given reference tends to be to an address that was used

recently. This is called temporal locality.

– Or it may be to an address that is near another address that was

used recently. This is called spatial locality.

• Therefore, keeping recently accessed blocks in the

cache can result in a remarkable number of hits.

– But there is no known way to quantify the amount of locality in

the reference stream.

Stack distance –

A measure of locality
• Consider the reference stream

(0, 8, 4, 4, 12, 16, 32, 4)

• If the cache line size is 8 bytes, the block
reference stream is

(0, 1, 0, 0, 1, 2, 4, 0)

• Now define the stack distance of a reference to
be the number of unique block addresses
between the current reference and the previous
reference to the same block number. In this
case

(, , 1, 0, 1, , , 3)

Stack distance –

A measure of locality (2)
Memory reference stream 0 8 4 4 12 16 32 4

Block reference stream 0 1 0 0 1 2 4 0

Stack distance 1 0 1 3

0

1

2

3

0 1 2 3

0

0.2

0.4

0.6

0 1 2 3 4

Number non-infinite accesses Cumulative stack distance

Stack distances of the SPEC

benchmarks – cumulative

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

SPECint

SPECfp

Stack distances of selected

SPECfp benchmarks

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

ammp

art

fma3d

galgel

lucas

mesa

mgrid

wupwise

Why is this interesting?

• It is possible to distinguish locality from conflict.

– Pure miss-rate data of set-associative caches

depends upon both the locality of the reference

stream and the conflict in that stream.

• It is possible to make qualitative statements

about locality

– For example, SPECint has a higher degree of

locality than SPECfp.

Fully-associative caches

• A fully-associative LRU cache consisting

of n lines will get a hit on any memory

reference access with a stack distance of

n-1 or less.

– Fully associative caches of size n store the

last n uniquely accessed blocks.

– This means the locality curves are simply a

graph of the hit rate on a fully associative

cache of size n-1.

Direct-mapped caches

• Consider a direct-mapped cache of n cache

lines and the block reference stream (x, y, x).

– The second reference to x will be a hit unless y is

mapped to the same cache line as x.

– If x and y are independent, the odds x being a hit is

(n-1)/n

• In general if there are m unique accesses

between the two references to x, the odds of a

hit are: n

n

m−

1

Expected hit rate at a given stack

distance for a 128-line cache

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

Direct-mapped

2-way associative

4-way associative

8-way associative

Fully associative

Verification – direct mapped

128-entry cache

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

Actual

Predicted

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

Actual

Predicted

SPECfpSPECint

Why is this interesting?

• It is possible to see exactly why more

associative caches do better than less

associative caches

– It also becomes possible to see when they do worse.

– The area under the curve is always equal to the

number of cache lines.

• It provides an expectation of performance.

– If things are worse, there must be excessive conflict.

– If things are better, it is likely due to spatial locality.

The 3C’s model
The 3’Cs model describes

misses as conflict, capacity or

compulsory by comparing a

direct-mapped cache to a fully-

associative cache.

– Those accesses in the gray area

are conflict misses.

– The in the green area are

capacity misses.

– The blue area is where both

caches get a hit.

– The yellow area is ignored by the

3C’s model. Perhaps a “conflict

hit”?

The 3C’s model is much more limited.

It cannot distinguish between

expected conflict and excessive

conflict.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

64-line DM

64-line FA

128-line FA

128-line DM

The filtering of locality (1/2)
gcc after a 64KB direct-mapped cache

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

Read/Write

All reads

Unfiltered

The filtering of locality (2/2)

• Notice that there fewer references at the

lowest stack distances than at the highest.

– Yet it is at the lowest stack distances where

highly-associative caches concentrate their

power.

– The locality seen by the L2 cache is

fundamentally different than that seen by the

L1 cache

• A large enough cache can make this effect go

away…

Measuring non-random conflict (1/2)

• Combining the cache and locality models

makes it possible to predict a hit rate.

– On these reference streams the cache tends to do

better than predicted.

• Although some benchmarks, like mgrid, see significantly

worse performance.

Benchmark Average predicted

hit rate

Average actual

hit rate

SPECint 90.81% 91.38%

SPECfp 83.19% 83.84%

Measuring non-random conflict (2/2)

• A more advanced technique, using a hash-
cache, allows us to roughly quantify the amount
of excessive conflict and scant conflict.
– This can be useful when deciding if a hash cache is

appropriate.

– It is also useful to provide feedback to the compiler
about its data-layout choices.

• Other compilers (gcc for example) tend to have
a higher degree of excessive conflict.
– So this technique may also be able to tell us

something about compliers.

Understanding non-standard

caches
128-line direct-mapped component and a 6-line victim component

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

Victim cache

Victim component

Direct-mapped component

Some review

• Consider the access pattern A, B, C, A. Assume

the three accesses are all independently

randomly placed with uniform probability

– In a direct-mapped cache with 8 lines, what is the

probability of a miss?

– A two-way associative cache with 4 lines?

– A victim cache of 1 one backing up a direct-mapped

cache of 4 lines?

– A skew cache with 8 lines?

• What is bogus about the above assumptions?

VIPT caches

• (Done on board)

