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Tomasulo-Style Scheduler 
Implementation
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• Synchronization managed by scheduler logic

• Communication through input/output networks

• Infrastructure geared towards register communication
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Out-of-Order Memory Operations

Scheduling is straightforward in out-of-order…
 Register inputs only

 Register renaming captures all true dependences

 Tags tell you exactly when you can execute

… except with loads and stores
 Speculative stores cannot modify memory

 Unless you can fix a mis-speculated store somehow!

 Register renaming does not tell you all dependences for loads
 There are some in memory

 How do loads find older in-flight stores to same address (if any)?

 Issue of finding if addresses match is called 
“memory disambiguation”
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The Good: Register Communication

• Directly specified dependencies (contained in inst)
 Accurate description of communication

 no false or missing dependency edges

 permits realization of dataflow schedule

 Early description of communication
 know dependencies upon decode
 allows scheduler logic to be pipelined without impacting speed of 

communication

• Small communication name space (32-64 usually)
 Fast access to communication storage

 possible to map entire communication space (no tags)
 possible to bypass communication storage

• Forwarding
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The Bad (and the ugly): Memory Scheduling

• Recall how we handle dependencies in registers
 We address false dependencies with register renaming.

 We address true dependencies with the out-of-order machine
 CDB broadcast and wakeup

• Why can’t we do the same things with memory?
 What would rename look like for memory?

 Why might it be hard to pull off?

 What about wakeup?
 What’s tricky here?

• Cannot directly use the same techniques
 Indirectly specified memory dependencies

 Large communication space (232-64 bytes!)

• Memory latency is variable
• Complicates scheduling
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Requirements for a Solution

• Accurate description of memory dependencies
 No (or few) missing or false dependencies

 Permit realization of dataflow schedule

• Early presentation of dependencies
 Permit pipelining of scheduler logic

• Fast access to communication space
 Preferably as fast as register communication (zero cycles)
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The Three Dependency “Flows”
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Implementation

Several hardware realizations:
 Unified LSQ (easier to understand, but nasty hardware)

 Separate LQ* and SQ (more complicated, but fairly elegant)

We’ll start with a unified LSQ and move to separate LB and SQ.

*Likely would end up with a load buffer (LB) rather than a queue…



Lecture 14 
Slide 9EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

In-order Load/Store Scheduling

• Idea: Schedule all loads and stores in 
program order
 This cannot violate true data 

dependencies (non-speculative)

• Capabilities/limitations:
 Overly restrictive – likely to add many

false dependencies

 Early presentation of dependencies 
(no addresses)

 Not fast, all communication through 
memory structures

• Found in in-order issue pipelines
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Consider the LSQ cases

Slot LSQ addresses (top is head)

A Store 0x44

B Load 0x20

C Load 0x44

D Store ????

E Load 0x44

F Store 0x20

G Load 0x20

H Load 0x60

• Which of the loads are 
we sure we will fulfill via 
D$/Memory?

• Which of the loads will 
we fulfill via load-to-
store forwarding?

• Which aren’t we sure of?

• Identify what to do with 
each load.
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Unified Load/Store Queue

Operates as a circular FIFO

 Allocate on dispatch

 De-allocate on retirement

Calc address in register dataflow order

A NxN comparator matrix detects 
memory address dependence (also 
considers relative age of entries)

 Store ops are held until 
retirement 

 Load ops are issued when no 
dependency exists & all older 
store addresses known
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Unified Load/Store Queue Questions 

When do we search for store-to-load forwarding?
❑ As soon as we have the load address

What could happen once we have the load address?
❑ There is a store whose data we’ll use

❑ There is no store whose data we’ll use

❑ We aren’t sure which store’s data, if any, we’ll use.

What should we do for each of those three cases?
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Split LQ and SQ

D$/TLB + structures to handle in-flight loads/stores
Performs four functions

In-order store retirement

• Writes stores to D$ in order

• Basic, implemented by store queue (SQ)

Store-load forwarding

• Allows loads to read values from older un-retired stores

• Data provided to LQ from SQ.

Memory ordering violation detection

• Checks load speculation (more later)

• Advanced, implemented by load queue (LQ)

Memory ordering violation avoidance

• Advanced, implemented by dependence predictors
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Simple Data Memory FU: D$/TLB + SQ

Just like any other FU
• 2 register inputs (addr, data in)

• 1 register output (data out)

• 1 non-register input (load pos)?

Store queue (SQ)
• In-flight store address/value

• In program order (like ROB)

• Addresses associatively searchable

• Size heuristic: 15-20% of ROB

But what does it do?

valueaddress
==
==
==
==
==
==
==
==

age

D$/TLB

head

tail

load position

address data in data out

Store Queue (SQ)
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When should a load access memory?
When to go to memory?

• Only at the head of the ROB (in order!)

• Only no stores between it and head of LSQ/ROB

• Only when there are no stores of the same address (or 
unknown address) between it and the head of the 
LSB/ROB.

• Load goes to memory at address calculation, gets fixed 
if there is a conflicting store
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When should a load go to the CDB?

• Once you know you have the right data

• Once you get some data
• If you get this wrong, you need to squash it and all(?) following 

instructions.

• Based on a confidence predictor or other additional 
information.
• “Memory dependence prediction”



EECS 470
Lecture 14 
Slide 17EECS 470 EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

How to get data from stores?

• Forwarding:

• If there is a conflicting store, get the data from it.

• This isn’t trivial.  
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Yet another idea…

• Let’s use a predictor

• Predict if a load is likely to be forwarding from a store
• If not, get it from D$ and send it to the CDB

• If so, wait.

• Thoughts on cost/benefit of speculation?
• How should that impact our predictor?

“Memory dependence prediction”


