
Lecture 14 
Slide 1EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

EECS 470

Memory Speculation

Winter 2024

Slides developed in part by Profs. Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, Shen, Smith, 
Sohi, Tyson, Vijaykumar, Wenisch of Carnegie Mellon University, Purdue University, University of 
Michigan, Univerity of Pennsylvania, and University of Wisconsin. 



Lecture 14 
Slide 2EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

Tomasulo-Style Scheduler 
Implementation

S
ch

ed
ul

er

Lo
gi

c

Results

Input/Result Networks

Reservation Stations

Inputs

Network

Control

Valid

Bits

Tag

Tag

V

V

Value

Value

FlagsOp

• Synchronization managed by scheduler logic

• Communication through input/output networks

• Infrastructure geared towards register communication



Lecture 14 
Slide 3EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

Out-of-Order Memory Operations

Scheduling is straightforward in out-of-order…
 Register inputs only

 Register renaming captures all true dependences

 Tags tell you exactly when you can execute

… except with loads and stores
 Speculative stores cannot modify memory

 Unless you can fix a mis-speculated store somehow!

 Register renaming does not tell you all dependences for loads
 There are some in memory

 How do loads find older in-flight stores to same address (if any)?

 Issue of finding if addresses match is called 
“memory disambiguation”



Lecture 14 
Slide 4EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

The Good: Register Communication

• Directly specified dependencies (contained in inst)
 Accurate description of communication

 no false or missing dependency edges

 permits realization of dataflow schedule

 Early description of communication
 know dependencies upon decode
 allows scheduler logic to be pipelined without impacting speed of 

communication

• Small communication name space (32-64 usually)
 Fast access to communication storage

 possible to map entire communication space (no tags)
 possible to bypass communication storage

• Forwarding



Lecture 14 
Slide 5EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

The Bad (and the ugly): Memory Scheduling

• Recall how we handle dependencies in registers
 We address false dependencies with register renaming.

 We address true dependencies with the out-of-order machine
 CDB broadcast and wakeup

• Why can’t we do the same things with memory?
 What would rename look like for memory?

 Why might it be hard to pull off?

 What about wakeup?
 What’s tricky here?

• Cannot directly use the same techniques
 Indirectly specified memory dependencies

 Large communication space (232-64 bytes!)

• Memory latency is variable
• Complicates scheduling



Lecture 14 
Slide 6EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

Requirements for a Solution

• Accurate description of memory dependencies
 No (or few) missing or false dependencies

 Permit realization of dataflow schedule

• Early presentation of dependencies
 Permit pipelining of scheduler logic

• Fast access to communication space
 Preferably as fast as register communication (zero cycles)



EECS 470
Lecture 14 

Slide 7EECS 470 EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

The Three Dependency “Flows”



Lecture 14 
Slide 8EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

Implementation

Several hardware realizations:
 Unified LSQ (easier to understand, but nasty hardware)

 Separate LQ* and SQ (more complicated, but fairly elegant)

We’ll start with a unified LSQ and move to separate LB and SQ.

*Likely would end up with a load buffer (LB) rather than a queue…



Lecture 14 
Slide 9EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

In-order Load/Store Scheduling

• Idea: Schedule all loads and stores in 
program order
 This cannot violate true data 

dependencies (non-speculative)

• Capabilities/limitations:
 Overly restrictive – likely to add many

false dependencies

 Early presentation of dependencies 
(no addresses)

 Not fast, all communication through 
memory structures

• Found in in-order issue pipelines

st X

ld Y

st Z

ld X

ld Z

true realized

Dependencies

pr
og

ra
m

 o
rd

er



Lecture 14 
Slide 10EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

Consider the LSQ cases

Slot LSQ addresses (top is head)

A Store 0x44

B Load 0x20

C Load 0x44

D Store ????

E Load 0x44

F Store 0x20

G Load 0x20

H Load 0x60

• Which of the loads are 
we sure we will fulfill via 
D$/Memory?

• Which of the loads will 
we fulfill via load-to-
store forwarding?

• Which aren’t we sure of?

• Identify what to do with 
each load.



Lecture 14 
Slide 11EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

Unified Load/Store Queue

Operates as a circular FIFO

 Allocate on dispatch

 De-allocate on retirement

Calc address in register dataflow order

A NxN comparator matrix detects 
memory address dependence (also 
considers relative age of entries)

 Store ops are held until 
retirement 

 Load ops are issued when no 
dependency exists & all older 
store addresses known

=
=
=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=

=

=
=
=
=
=
=
=
=

=
=

=
=
=
=
=
=
=

= = =
=
=
=

=
=
=
=
=
=

=

address

calculation+

translation



Lecture 14 
Slide 12EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

Unified Load/Store Queue Questions 

When do we search for store-to-load forwarding?
❑ As soon as we have the load address

What could happen once we have the load address?
❑ There is a store whose data we’ll use

❑ There is no store whose data we’ll use

❑ We aren’t sure which store’s data, if any, we’ll use.

What should we do for each of those three cases?



EECS 470
Lecture 14 
Slide 13EECS 470 EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

Split LQ and SQ

D$/TLB + structures to handle in-flight loads/stores
Performs four functions

In-order store retirement

• Writes stores to D$ in order

• Basic, implemented by store queue (SQ)

Store-load forwarding

• Allows loads to read values from older un-retired stores

• Data provided to LQ from SQ.

Memory ordering violation detection

• Checks load speculation (more later)

• Advanced, implemented by load queue (LQ)

Memory ordering violation avoidance

• Advanced, implemented by dependence predictors



EECS 470
Lecture 14 
Slide 14EECS 470 EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

Simple Data Memory FU: D$/TLB + SQ

Just like any other FU
• 2 register inputs (addr, data in)

• 1 register output (data out)

• 1 non-register input (load pos)?

Store queue (SQ)
• In-flight store address/value

• In program order (like ROB)

• Addresses associatively searchable

• Size heuristic: 15-20% of ROB

But what does it do?

valueaddress
==
==
==
==
==
==
==
==

age

D$/TLB

head

tail

load position

address data in data out

Store Queue (SQ)



EECS 470
Lecture 14 
Slide 15EECS 470 EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

When should a load access memory?
When to go to memory?

• Only at the head of the ROB (in order!)

• Only no stores between it and head of LSQ/ROB

• Only when there are no stores of the same address (or 
unknown address) between it and the head of the 
LSB/ROB.

• Load goes to memory at address calculation, gets fixed 
if there is a conflicting store



EECS 470
Lecture 14 
Slide 16EECS 470 EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

When should a load go to the CDB?

• Once you know you have the right data

• Once you get some data
• If you get this wrong, you need to squash it and all(?) following 

instructions.

• Based on a confidence predictor or other additional 
information.
• “Memory dependence prediction”



EECS 470
Lecture 14 
Slide 17EECS 470 EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

How to get data from stores?

• Forwarding:

• If there is a conflicting store, get the data from it.

• This isn’t trivial.  



EECS 470
Lecture 14 
Slide 18EECS 470 EECS 470 

Portions © Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, 

Shen, Smith, Sohi, Tyson, Vijaykumar, Wenisch

Yet another idea…

• Let’s use a predictor

• Predict if a load is likely to be forwarding from a store
• If not, get it from D$ and send it to the CDB

• If so, wait.

• Thoughts on cost/benefit of speculation?
• How should that impact our predictor?

“Memory dependence prediction”


