
© Brehob -- Portions © Brooks, Dutta, Mudge & Wenisch

On Power and Multi-Processors

Finishing up power issues and how those
issues have led us to multi-core processors.

Introduce multi-processor systems.

© Brehob -- Portions © Brooks, Dutta, Mudge & Wenisch

Capacitive Power dissipation

Power ~ ½ CV2Af

Capacitance:
Function of wire length,
transistor size

Supply Voltage:
Has been dropping with
successive fab generations

Clock frequency:
Increasing…

Activity factor:
How often, on average, do wires
switch?

W
h

at
 u

se
s

p
o

w
e

r
in

 a
 c

h
ip

?

© Brehob -- Portions © Brooks, Dutta, Mudge & Wenisch

With more voltage you can get a
higher frequency

• Back to our water analogy:

– The higher voltage is a higher water tower so a
higher water pressure.

– The “buckets” fill up faster

– The circuit is faster.

• This is roughly a linear relationship over a
fairly small dynamic range.

© Brehob -- Portions © Brooks, Dutta, Mudge & Wenisch

And so…

• Power ~ ½ CV2Af.
– We can scale frequency with voltage.

– We can claim that power ~proportional to f3.

• Performance ~f.
– Doubling frequency doesn’t double performance

(memory latency) but it’s close enough for our “~”

• Say we have a processor that uses 100W and can
do 1 billion operations per second (1GOP).
– Increasing performance to 1.1 GOPs with

voltage/frequency scaling will need (1.1)3 *100W= 133W

© Brehob -- Portions © Brooks, Dutta, Mudge & Wenisch

Can we do better?

• Can’t we get speedup in other ways than
frequency scaling?
– Of course. Bigger caches, increasing superscalar, etc.

– But most of these have a pretty high
performance/power ratio also.
• Consider being more superscalar

– The cost for each “level” is more than the previous (why?)

– The benefit of each “level” is less than the previous (why?)

• Caches are similar.
– Doubling a cache size roughly halves its miss rate.

» That’s a doubling in cache power for fewer and fewer misses
removed (and higher and higher latency!)

© Brehob -- Portions © Brooks, Dutta, Mudge & Wenisch

Sample problem

• Say I have a 200W budget and a single-core
processor that can do 10 GOPs.
– What performance would I expect to get out of two

cores using the same power budget?

– Four cores?

– Eight cores?

• Does this really scale so nicely?
– Of course not, but it’s another dimension to extract

performance from
• Thread-level!

© Brehob -- Portions © Brooks, Dutta, Mudge & Wenisch

So…

• Multiprocessors seem like a good place to
improve performance with a more reasonable
power cost.

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Why multi-processors?

• Why multi-processors?
 Multi-processors have been around for a long time.

 Originally used to get best performance for certain highly-parallel tasks.

 We now use them to get solid performance per unit of energy.
 Basic theme: it’s much less energy to do two things slowly than one

thing twice as fast.

• So that’s it?
 Not so much.

 We need to make it possible/reasonable/easy to use.
 Nothing comes for free.

❑ If we take a task and break it up so it runs on a number of
processors, there is going to be a price.

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Thread-Level Parallelism

• Thread-level parallelism (TLP)

 Collection of asynchronous tasks: not started and stopped
together

 Data shared loosely, dynamically

• Example: database/web server (each query is a thread)

 accts is shared, can’t register allocate even if it were scalar

 id and amt are private variables, register allocated to r1, r2

struct acct_t { int bal; };

shared struct acct_t accts[MAX_ACCT];

int id,amt;

if (accts[id].bal >= amt)

{

accts[id].bal -= amt;

spew_cash();

}

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

6:

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Shared-Memory Multiprocessors

P1 P2 P3 P4

Memory System

• Shared memory
 Multiple execution contexts sharing a single address space

 Multiple programs (MIMD)

 Or more frequently: multiple copies of one program (SPMD)

 Implicit (automatic) communication via loads and stores

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

What’s the other option?

• Basically the only other option is “message passing”
 We communicate via explicit messages.

 So instead of just changing a variable, we’d need to call a function to
pass a specific message.

• Message passing systems are easy to build and pretty efficient.
 But harder to code.

• Shared memory programming is basically the same as multi-
threaded programming on one processors
 And (many) programmers already know how to do that.

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

So Why Shared Memory?

Pluses
 For applications looks like multitasking uniprocessor

 For OS only evolutionary extensions required

 Easy to do communication without OS being involved

 Software can worry about correctness first then performance

Minuses
 Proper synchronization is complex

 Communication is implicit so harder to optimize

 Hardware designers must implement

Result
 Traditionally bus-based Symmetric Multiprocessors (SMPs), and now

the CMPs are the most success parallel machines ever

 And the first with multi-billion-dollar markets

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Shared-Memory Multiprocessors

P1 P2 P3 P4

• There are lots of ways to connect processors together

Interconnection Network

Cache M1

Interface

Cache M2

Interface

Cache M3

Interface

Cache M4

Interface

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Paired vs. Separate Processor/Memory?
• Separate processor/memory

 Uniform memory access (UMA): equal latency to all memory

+ Simple software, doesn’t matter where you put data

– Lower peak performance

 Bus-based UMAs common: symmetric multi-processors (SMP)

• Paired processor/memory

 Non-uniform memory access (NUMA): faster to local memory

– More complex software: where you put data matters

+ Higher peak performance: assuming proper data placement

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

MemR RRR

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Shared vs. Point-to-Point Networks

• Shared network: e.g., bus (left)

+ Low latency

– Low bandwidth: doesn’t scale beyond ~16 processors

+ Shared property simplifies cache coherence protocols (later)

• Point-to-point network: e.g., mesh or ring (right)

– Longer latency: may need multiple “hops” to communicate

+ Higher bandwidth: scales to 1000s of processors

– Cache coherence protocols are complex

CPU($)

Mem
CPU($)

Mem R

CPU($)

Mem R

CPU($)

MemR

CPU($)

MemR

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem RRRR

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Organizing Point-To-Point Networks
• Network topology: organization of network

 Tradeoff performance (connectivity, latency, bandwidth)  cost

• Router chips

 Networks that require separate router chips are indirect

 Networks that use processor/memory/router packages are direct

+ Fewer components, “Glueless MP”

• Point-to-point network examples

 Indirect tree (left)

 Direct mesh or ring (right)

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

MemR RRR

R

R

R

CPU($)

Mem R

CPU($)

Mem R

CPU($)

MemR

CPU($)

MemR

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Implementation #1: Snooping Bus MP

• Two basic implementations

• Bus-based systems

 Typically small: 2–8 (maybe 16) processors

 Typically processors split from memories (UMA)
 Sometimes multiple processors on single chip (CMP)

 Symmetric multiprocessors (SMPs)

 Common, I use one everyday

CPU($) CPU($)

Mem

CPU($)

Mem

CPU($)

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Implementation #2: Scalable MP

• General point-to-point network-based systems
 Typically processor/memory/router blocks (NUMA)

 Glueless MP: no need for additional “glue” chips

 Can be arbitrarily large: 1000’s of processors
 Massively parallel processors (MPPs)

 In reality only government (DoD) has MPPs…
 Companies have much smaller systems: 32–64 processors

 Scalable multi-processors

CPU($)

Mem R

CPU($)

Mem R

CPU($)

MemR

CPU($)

MemR

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Issues for Shared Memory Systems

• Two in particular
 Cache coherence

 Memory consistency model

• Closely related to each other

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

An Example Execution

• Two $100 withdrawals from account #241 at two ATMs
 Each transaction maps to thread on different processor

 Track accts[241].bal (address is in r3)

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

CPU0 MemCPU1

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

No-Cache, No-Problem

• Scenario I: processors have no caches
 No problem

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500

500

400

400

300

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Cache Incoherence

• Scenario II: processors have write-back caches
 Potentially 3 copies of accts[241].bal: memory, p0$, p1$

 Can get incoherent (inconsistent)

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500

V:500 500

D:400 500

D:400 500V:500

D:400 500D:400

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Hardware Cache Coherence

• Coherence controller:
 Examines bus traffic (addresses and data)

 Executes coherence protocol
 What to do with local copy when you see different

things happening on bus

CPU

D
$

da
ta

D
$

ta
gs

CC

bus

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Snooping Cache-Coherence Protocols

Bus provides serialization point

Each cache controller “snoops” all bus transactions
 take action to ensure coherence

 invalidate

 update
 supply value

 depends on state of the block and the protocol

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Snooping Design Choices

Processor

ld/st

Snoop (observed bus transaction)

State Tag Data

. . .

Controller updates state of blocks
in response to processor and
snoop events and generates bus
xactions

Often have duplicate cache tags

Snoopy protocol
 set of states

 state-transition diagram

 actions

Basic Choices
 write-through vs. write-back

 invalidate vs. update

Cache

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

The Simple Invalidate Snooping Protocol

Write-through, no-
write-allocate cache

Actions: PrRd, PrWr,
BusRd, BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd / --

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Example time

Processor 1 Processor 2 Bus

Processor

Transaction

Cache

State

Processor

Transaction

Cache

State

Read A

Read A

Read A

Write A

Read A

Write A

Write A

Actions:

• PrRd, PrWr,

• BusRd, BusWr

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

More Generally: MOESI

[Sweazey & Smith ISCA86]

M - Modified (dirty)

O - Owned (dirty but shared) WHY?

E - Exclusive (clean unshared) only copy, not dirty

S - Shared

I - Invalid

Variants
 MSI

 MESI

 MOSI

 MOESI

O

M

E

S

I

ownership

validity

exclusiveness

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

MESI example

• M - Modified (dirty)
• E - Exclusive (clean unshared) only copy, not dirty
• S - Shared
• I - Invalid

Processor 1 Processor 2 Bus

Processor

Transaction

Cache

State

Processor

Transaction

Cache

State

Read A

Read A

Read A

Write A

Read A

Write A

Write A

Actions:

• PrRd, PrWr,

• BRL – Bus Read Line (BusRd)

• BWL – Bus Write Line (BusWr)

• BRIL – Bus Read and Invalidate

• BIL – Bus Invalidate Line

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

