
© Brehob -- Portions © Brooks, Dutta, Mudge & Wenisch

On Power and Multi-Processors

Finishing up power issues and how those
issues have led us to multi-core processors.

Introduce multi-processor systems.

© Brehob -- Portions © Brooks, Dutta, Mudge & Wenisch

Capacitive Power dissipation

Power ~ ½ CV2Af

Capacitance:
Function of wire length,
transistor size

Supply Voltage:
Has been dropping with
successive fab generations

Clock frequency:
Increasing…

Activity factor:
How often, on average, do wires
switch?

W
h

at
 u

se
s

p
o

w
e

r
in

 a
 c

h
ip

?

© Brehob -- Portions © Brooks, Dutta, Mudge & Wenisch

With more voltage you can get a
higher frequency

• Back to our water analogy:

– The higher voltage is a higher water tower so a
higher water pressure.

– The “buckets” fill up faster

– The circuit is faster.

• This is roughly a linear relationship over a
fairly small dynamic range.

© Brehob -- Portions © Brooks, Dutta, Mudge & Wenisch

And so…

• Power ~ ½ CV2Af.
– We can scale frequency with voltage.

– We can claim that power ~proportional to f3.

• Performance ~f.
– Doubling frequency doesn’t double performance

(memory latency) but it’s close enough for our “~”

• Say we have a processor that uses 100W and can
do 1 billion operations per second (1GOP).
– Increasing performance to 1.1 GOPs with

voltage/frequency scaling will need (1.1)3 *100W= 133W

© Brehob -- Portions © Brooks, Dutta, Mudge & Wenisch

Can we do better?

• Can’t we get speedup in other ways than
frequency scaling?
– Of course. Bigger caches, increasing superscalar, etc.

– But most of these have a pretty high
performance/power ratio also.
• Consider being more superscalar

– The cost for each “level” is more than the previous (why?)

– The benefit of each “level” is less than the previous (why?)

• Caches are similar.
– Doubling a cache size roughly halves its miss rate.

» That’s a doubling in cache power for fewer and fewer misses
removed (and higher and higher latency!)

© Brehob -- Portions © Brooks, Dutta, Mudge & Wenisch

Sample problem

• Say I have a 200W budget and a single-core
processor that can do 10 GOPs.
– What performance would I expect to get out of two

cores using the same power budget?

– Four cores?

– Eight cores?

• Does this really scale so nicely?
– Of course not, but it’s another dimension to extract

performance from
• Thread-level!

© Brehob -- Portions © Brooks, Dutta, Mudge & Wenisch

So…

• Multiprocessors seem like a good place to
improve performance with a more reasonable
power cost.

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Why multi-processors?

• Why multi-processors?
 Multi-processors have been around for a long time.

 Originally used to get best performance for certain highly-parallel tasks.

 We now use them to get solid performance per unit of energy.
 Basic theme: it’s much less energy to do two things slowly than one

thing twice as fast.

• So that’s it?
 Not so much.

 We need to make it possible/reasonable/easy to use.
 Nothing comes for free.

❑ If we take a task and break it up so it runs on a number of
processors, there is going to be a price.

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Thread-Level Parallelism

• Thread-level parallelism (TLP)

 Collection of asynchronous tasks: not started and stopped
together

 Data shared loosely, dynamically

• Example: database/web server (each query is a thread)

 accts is shared, can’t register allocate even if it were scalar

 id and amt are private variables, register allocated to r1, r2

struct acct_t { int bal; };

shared struct acct_t accts[MAX_ACCT];

int id,amt;

if (accts[id].bal >= amt)

{

accts[id].bal -= amt;

spew_cash();

}

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

6:

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Shared-Memory Multiprocessors

P1 P2 P3 P4

Memory System

• Shared memory
 Multiple execution contexts sharing a single address space

 Multiple programs (MIMD)

 Or more frequently: multiple copies of one program (SPMD)

 Implicit (automatic) communication via loads and stores

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

What’s the other option?

• Basically the only other option is “message passing”
 We communicate via explicit messages.

 So instead of just changing a variable, we’d need to call a function to
pass a specific message.

• Message passing systems are easy to build and pretty efficient.
 But harder to code.

• Shared memory programming is basically the same as multi-
threaded programming on one processors
 And (many) programmers already know how to do that.

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

So Why Shared Memory?

Pluses
 For applications looks like multitasking uniprocessor

 For OS only evolutionary extensions required

 Easy to do communication without OS being involved

 Software can worry about correctness first then performance

Minuses
 Proper synchronization is complex

 Communication is implicit so harder to optimize

 Hardware designers must implement

Result
 Traditionally bus-based Symmetric Multiprocessors (SMPs), and now

the CMPs are the most success parallel machines ever

 And the first with multi-billion-dollar markets

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Shared-Memory Multiprocessors

P1 P2 P3 P4

• There are lots of ways to connect processors together

Interconnection Network

Cache M1

Interface

Cache M2

Interface

Cache M3

Interface

Cache M4

Interface

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Paired vs. Separate Processor/Memory?
• Separate processor/memory

 Uniform memory access (UMA): equal latency to all memory

+ Simple software, doesn’t matter where you put data

– Lower peak performance

 Bus-based UMAs common: symmetric multi-processors (SMP)

• Paired processor/memory

 Non-uniform memory access (NUMA): faster to local memory

– More complex software: where you put data matters

+ Higher peak performance: assuming proper data placement

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

MemR RRR

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Shared vs. Point-to-Point Networks

• Shared network: e.g., bus (left)

+ Low latency

– Low bandwidth: doesn’t scale beyond ~16 processors

+ Shared property simplifies cache coherence protocols (later)

• Point-to-point network: e.g., mesh or ring (right)

– Longer latency: may need multiple “hops” to communicate

+ Higher bandwidth: scales to 1000s of processors

– Cache coherence protocols are complex

CPU($)

Mem
CPU($)

Mem R

CPU($)

Mem R

CPU($)

MemR

CPU($)

MemR

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem RRRR

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Organizing Point-To-Point Networks
• Network topology: organization of network

 Tradeoff performance (connectivity, latency, bandwidth) cost

• Router chips

 Networks that require separate router chips are indirect

 Networks that use processor/memory/router packages are direct

+ Fewer components, “Glueless MP”

• Point-to-point network examples

 Indirect tree (left)

 Direct mesh or ring (right)

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

MemR RRR

R

R

R

CPU($)

Mem R

CPU($)

Mem R

CPU($)

MemR

CPU($)

MemR

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Implementation #1: Snooping Bus MP

• Two basic implementations

• Bus-based systems

 Typically small: 2–8 (maybe 16) processors

 Typically processors split from memories (UMA)
 Sometimes multiple processors on single chip (CMP)

 Symmetric multiprocessors (SMPs)

 Common, I use one everyday

CPU($) CPU($)

Mem

CPU($)

Mem

CPU($)

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Implementation #2: Scalable MP

• General point-to-point network-based systems
 Typically processor/memory/router blocks (NUMA)

 Glueless MP: no need for additional “glue” chips

 Can be arbitrarily large: 1000’s of processors
 Massively parallel processors (MPPs)

 In reality only government (DoD) has MPPs…
 Companies have much smaller systems: 32–64 processors

 Scalable multi-processors

CPU($)

Mem R

CPU($)

Mem R

CPU($)

MemR

CPU($)

MemR

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Issues for Shared Memory Systems

• Two in particular
 Cache coherence

 Memory consistency model

• Closely related to each other

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

An Example Execution

• Two $100 withdrawals from account #241 at two ATMs
 Each transaction maps to thread on different processor

 Track accts[241].bal (address is in r3)

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

CPU0 MemCPU1

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

No-Cache, No-Problem

• Scenario I: processors have no caches
 No problem

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500

500

400

400

300

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Cache Incoherence

• Scenario II: processors have write-back caches
 Potentially 3 copies of accts[241].bal: memory, p0$, p1$

 Can get incoherent (inconsistent)

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500

V:500 500

D:400 500

D:400 500V:500

D:400 500D:400

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Hardware Cache Coherence

• Coherence controller:
 Examines bus traffic (addresses and data)

 Executes coherence protocol
 What to do with local copy when you see different

things happening on bus

CPU

D
$

da
ta

D
$

ta
gs

CC

bus

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Snooping Cache-Coherence Protocols

Bus provides serialization point

Each cache controller “snoops” all bus transactions
 take action to ensure coherence

 invalidate

 update
 supply value

 depends on state of the block and the protocol

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Snooping Design Choices

Processor

ld/st

Snoop (observed bus transaction)

State Tag Data

. . .

Controller updates state of blocks
in response to processor and
snoop events and generates bus
xactions

Often have duplicate cache tags

Snoopy protocol
 set of states

 state-transition diagram

 actions

Basic Choices
 write-through vs. write-back

 invalidate vs. update

Cache

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

The Simple Invalidate Snooping Protocol

Write-through, no-
write-allocate cache

Actions: PrRd, PrWr,
BusRd, BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd / --

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

Example time

Processor 1 Processor 2 Bus

Processor

Transaction

Cache

State

Processor

Transaction

Cache

State

Read A

Read A

Read A

Write A

Read A

Write A

Write A

Actions:

• PrRd, PrWr,

• BusRd, BusWr

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

More Generally: MOESI

[Sweazey & Smith ISCA86]

M - Modified (dirty)

O - Owned (dirty but shared) WHY?

E - Exclusive (clean unshared) only copy, not dirty

S - Shared

I - Invalid

Variants
 MSI

 MESI

 MOSI

 MOESI

O

M

E

S

I

ownership

validity

exclusiveness

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

MESI example

• M - Modified (dirty)
• E - Exclusive (clean unshared) only copy, not dirty
• S - Shared
• I - Invalid

Processor 1 Processor 2 Bus

Processor

Transaction

Cache

State

Processor

Transaction

Cache

State

Read A

Read A

Read A

Write A

Read A

Write A

Write A

Actions:

• PrRd, PrWr,

• BRL – Bus Read Line (BusRd)

• BWL – Bus Write Line (BusWr)

• BRIL – Bus Read and Invalidate

• BIL – Bus Invalidate Line

EECS 470

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar. Wenisch

