
Multiprocessors continued
Quad-core Kentsfield packageIBM's Power7 with eight cores and 32 Mbytes eDRAM

Quick overview

• Why do we have multi-processors?

• What type of programs will work well? What
type work poorly?

Overview of today’s lecture

• Performance expectations
– Amdahl’s law.

• Review
– Shared memory vs. message passing
– Interconnection networks
– Thread-level parallelism

• Context
– Bandwidth

• Coherence
– Directory-based consistency protocols

• Consistency
– Sequential (strong) consistency, weak consistency

Let’s (re)start at the top:
Performance Expectations

• Amdahl's Law:
– If a fraction P of your program can be sped up by a

factor of S, then your performance is:

– So if P=0.3 and S=2 we get (1/(.7+.15))
1/.85 which is about 1.17.

• Question:
– If you have a program in which 10% can’t be done in

parallel (i.e. must be serial) and you’ve got 64
processors, what’s the best speed up you could hope
for?

S

P
P)(

1

+−1

Review

Review:
Thread-Level Parallelism

• Thread-level parallelism (TLP)
– Collection of asynchronous tasks: not started and stopped

together
– Data shared loosely, dynamically

• Example: database/web server (each query is a thread)
– accts is shared, can’t register allocate1 even if it were scalar
– id and amt are private variables, register allocated to r1, r2

struct acct_t { int bal; };

shared struct acct_t accts[MAX_ACCT];

int id,amt;

if (accts[id].bal >= amt)

{

accts[id].bal -= amt;

spew_cash();

}

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

6:

Review: TLP

1Keyword in C is “volatile”

Thread level parallelism (TLP)

• We exploited parallelism at the instruction
level (ILP)
– Hardware can’t find TLP.

• Complier/programmer needs to find it (we lack the
window size)

• Compilers getting better at this.

– But hardware can take advantage of TLP
• Run on multiple cores

• If data is shared, provide rules to the software about
what it can assume about shared data.

Review: TLP

Review:
Why Shared Memory?

Pluses:

– For applications looks like multitasking uniprocessor

– For OS only evolutionary extensions required

– Easy to do communication without OS

– Software can worry about correctness first then performance

Minuses:

– Proper synchronization is complex

– Communication is implicit so harder to optimize

– Hardware designers must implement

Result:

– Traditionally bus-based Symmetric Multiprocessors (SMPs), and now the CMPs
are the most success parallel machines ever

– And the first with multi-billion-dollar markets

Review: Shared memory vs. message passing

Alternative to shared memory?

• Explicit message passing

– Rather difficult to code

• We’ll not be doing
anything with it

– But while not a 470
topic, it is important.
• Graduate level parallel

programming class covers
this in detail.

Review: Shared memory vs. message passing

But shared memory systems have their
own problems

• Two in particular

– Cache coherence

– Memory consistency model

• Different solutions depending on interconnect

– So let’s do interconnect now, and jump back to
these two later.

Review: Shared memory vs. message passing

Review:
Interconnect

• There are many ways to connect processors.
– Shared network

• Bus-based

• Crossbar

– Point-to-point
• More topologies than I want to think about

– Mesh (in any amount of dimensionality)

– Torus (in any amount of dimensionality)

– nCube

– Tree

– etc. etc. etc. etc.

Review: Interconnect

Shared vs. Point-to-Point Networks
• Shared network: e.g., bus (left)

+ Low latency
– Low bandwidth: doesn’t scale beyond ~8 processors
+ Shared property simplifies cache coherence protocols (later)

• Point-to-point network: e.g., mesh or ring (right)
– Longer latency: may need multiple “hops” to communicate
+ Higher bandwidth: scales to 1000s of processors
– Cache coherence protocols are complex

CPU($)

Mem

CPU($)

Mem R

CPU($)

Mem R

CPU($)

MemR

CPU($)

MemR

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem RRRR

Review: Interconnect

Organizing Point-To-Point Networks
• Network topology: organization of network

– Tradeoff performance (connectivity, latency, bandwidth) cost

• Router chips

– Networks that require separate router chips are indirect

– Networks that use processor/memory/router packages are direct

+ Fewer components, “Glueless MP”

• Point-to-point network examples

– Indirect tree (left)

– Direct mesh or ring (right)

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

MemR RRR

R

R

R

CPU($)

Mem R

CPU($)

Mem R

CPU($)

MemR

CPU($)

MemR

Review: Interconnect

Context:
Bandwidth

• As in the uniprocessor we need caches

– To reduce average memory latency.

• But recall caches are also important for
reducing bandwidth.

– And now we’ve got (say) 4x as many requests

• And the total amount of bandwidth is shrinking (why?)

– We’ve probably got a bandwidth problem.

• It’s important that caches work well!
CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem RRRR

Review: Bandwidth!

Hardware Cache Coherence

• Coherence controller:

– Examines bus traffic (addresses and
data)

– Executes coherence protocol

• What to do with local copy when you
see different things happening on bus

CPU

D
$

 d
at

a

D
$

 t
ag

s

CC

bus

Review: Coherence!

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Scalability problems of Snoopy Coherence

• Prohibitive bus bandwidth
 Required bandwidth grows with # CPUS…

 … but available BW per bus is fixed

 Adding busses makes serialization/ordering hard

• Prohibitive processor snooping bandwidth
 All caches do tag lookup when ANY processor accesses memory

 Inclusion limits this to L2, but still lots of lookups

• Upshot: bus-based coherence doesn’t scale beyond 8–16 CPUs

Coherence: Bus-based bandwidth issues

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Scalable Cache Coherence

• Scalable cache coherence: two part solution

• Part I: bus bandwidth
 Replace non-scalable bandwidth substrate (bus)…

 …with scalable bandwidth one (point-to-point network, e.g., mesh)

• Part II: processor snooping bandwidth
 Interesting: most snoops result in no action

 Replace non-scalable broadcast protocol (spam everyone)…

 …with scalable directory protocol (only spam processors that care)

Review: Coherence!

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Directory Coherence Protocols

• Observe: physical address space statically partitioned
+ Can easily determine which memory module holds a given line

 That memory module sometimes called “home”

– Can’t easily determine which processors have line in their caches

 Bus-based protocol: broadcast events to all processors/caches
± Simple and fast, but non-scalable

• Directories: non-broadcast coherence protocol
 Extend memory to track caching information

 For each physical cache line whose home this is, track:
 Owner: which processor has a dirty copy (I.e., M state)
 Sharers: which processors have clean copies (I.e., S state)

 Processor sends coherence event to home directory
 Home directory only sends events to processors that care

Coherence: Directory-based

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Read Processing

Read A (miss)
Node #1 Directory Node #2

A: Shared, #1

Coherence: Directory-based

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Write Processing

Read A (miss)
Node #1 Directory Node #2

A: Shared, #1

Trade-offs:

• Longer accesses (3-hop between Processor, directory, other Processor)

• Lower bandwidth → no snoops necessary

Makes sense either for CMPs (lots of L1 miss traffic)
or large-scale servers (shared-memory MP > 32 nodes)

A: Mod., #2

Coherence: Directory-based

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Serialization and Ordering

Let A and flag be initially 0

P1 P2

A += 5 while (flag == 0)

flag = 1 print A

Assume A and flag are in different cache blocks

What happens?

How do you implement it correctly?

Coherence: Directory-based

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Coherence vs. Consistency

Intuition says loads should return latest value
 what is latest?

Coherence concerns only one memory location

Consistency concerns apparent ordering for all locations

A Memory System is Coherent if
 can serialize all operations to that location such that,

 operations performed by any processor appear in program order
 program order = order defined program text or assembly code

 value returned by a read is value written by last store to that
location

Coherence vs. Consistency

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Why Coherence != Consistency

/* initial A = B = flag = 0 */

P1 P2

A = 1; while (flag == 0); /* spin */

B = 1; print A;

flag = 1; print B;

Intuition says printed A = B = 1

Coherence doesn’t say anything. Why?

Your uniprocessor ordering mechanisms (ld/st queue) hurts here.
Why?

Coherence vs. Consistency

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Sequential Consistency (SC)

switch randomly set
after each memory op
provides single sequential
order among all operations

processors
issue
memory
ops
in
program
order

P1 P2 P3

Memory

Consistency

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Sufficient Conditions for SC

Every proc. issues memory ops in program order

Memory ops happen (start and end) atomically
 must wait for store to complete before issuing next memory op

 after load, issuing proc waits for load to complete, before issuing next op

Easily implemented with a shared bus

Consistency

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Relaxed Memory Models

Motivation with Directory Protocols
 Misses have longer latency (do cache hits to get to next miss)

 Collecting acknowledgements can take even longer

Recall SC has
 Each processor generates at total order of its reads and writes

(R-->R, R-->W, W-->W, & W-->R)

 That are interleaved into a global total order

Example Relaxed Models

PC: Relax ordering from writes to (other proc’s) reads

RC: Relax all read/write orderings (but add “fences”)

Consistency

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Locks

Locks

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Lock-based Mutual Exclusion

xf
er

C
rit

. s
ec

re
le

as
e

Acquire starts

w
ai

t

w
ai

t

xf
er

C
rit

. s
ec

re
le

as
e

xf
er

C
rit

. s
ec

Acquire done

Release starts

Release done

Synchronization

period

No contention:
• Want low latency

Contention:
• Want low period
• Low traffic
• Fairness

Locks

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

How Not to Implement Locks

•LOCK

while (lock_variable == 1);

lock_variable = 1

•UNLOCK

lock_variable = 0;

Context switch!

Locks

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Solution: Atomic Read-Modify-Write

• Test&Set(r,x)
{r=m[x]; m[x]=1;}

• Fetch&Op(r1,r2,x,op)
{r1=m[x]; m[x]=op(r1,r2);}

• Swap(r,x)
{temp=m[x]; m[x]=r; r=temp;}

• Compare&Swap(r1,r2,x)
{temp=r2; r2=m[x]; if r1==r2 then m[x]=temp;}

• r is register
• m[x] is memory location x

Locks

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Write a lock and unlock with
test-and-set

• Lock:

• unlock:

Locks

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Implementing RMWs

• Bus-based systems:
 Hold bus and issue load/store operations without any intervening

accesses by other processors

• Scalable systems
 Acquire exclusive ownership via cache coherence

 Perform load/store operations without allowing external coherence
requests

Locks

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Test-and-Set Spin Lock (T&S)

• Lock is “acquire”, Unlock is “release”

• acquire(lock_ptr):

while (true):

// Perform “test-and-set”

old = compare_and_swap(lock_ptr, UNLOCKED, LOCKED)

if (old == UNLOCKED):

break // lock acquired!

// keep spinning, back to top of while loop

• release(lock_ptr):

store[lock_ptr] <- UNLOCKED

• Performance problem
 CAS is both a read and write; spinning causes lots of invalidations

Locks

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Load Locked / Store Conditional
(LL/SC)

• Sometimes having an atomic read/modify/write operation isn’t
viable.
 Maybe your memory system just doesn’t support it

 Maybe it involves a very expensive “lock out” that prevents any
other memory operation until the lock finishes.

• Still possible to manage with a two step process
 Do a special load called a “load lock” or load “link”.

 Works like a normal load but it tells the hardware to watch for a store to
that same address.

 Do a “store conditional” to the same address
 If there was a store to that location since the load lock, the store “fails”

and that failure is communicated to the programmer (store has a
destination register)

❑ Failed store doesn’t write to memory

 Now we know if the load and store was effectively atomic.

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Load-Locked Store-Conditional

• Load-locked
 Issues a normal load…
 …and sets a flag and address field

• Store-conditional
 Checks that flag is set and address matches

 If so, performs store and sets store register to 1.
 Otherwise sets store register to 0.

• Flag is cleared by
 Invalidation
 Cache eviction
 Context switch

lock: lda r2, #1

ll r1, lock_variable

sc lock_variable, r2

beqz r2, lock

neqz r1, lock // branch not equal to zero

unlock:st lock_variable, #0

Locks

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Next up: Static Optimizations

•Why might we want to start loads early?
Moving loads to happen earlier is called “hoisting”

•What three things limits a complier’s ability to
hoist a load?

