
Multiprocessors continued
Quad-core Kentsfield packageIBM's Power7 with eight cores and 32 Mbytes eDRAM

Quick overview

• Why do we have multi-processors?

• What type of programs will work well? What
type work poorly?

Overview of today’s lecture

• Performance expectations
– Amdahl’s law.

• Review
– Shared memory vs. message passing
– Interconnection networks
– Thread-level parallelism

• Context
– Bandwidth

• Coherence
– Directory-based consistency protocols

• Consistency
– Sequential (strong) consistency, weak consistency

Let’s (re)start at the top:
Performance Expectations

• Amdahl's Law:
– If a fraction P of your program can be sped up by a

factor of S, then your performance is:

– So if P=0.3 and S=2 we get (1/(.7+.15))
1/.85 which is about 1.17.

• Question:
– If you have a program in which 10% can’t be done in

parallel (i.e. must be serial) and you’ve got 64
processors, what’s the best speed up you could hope
for?

S

P
P)(

1

+−1

Review

Review:
Thread-Level Parallelism

• Thread-level parallelism (TLP)
– Collection of asynchronous tasks: not started and stopped

together
– Data shared loosely, dynamically

• Example: database/web server (each query is a thread)
– accts is shared, can’t register allocate1 even if it were scalar
– id and amt are private variables, register allocated to r1, r2

struct acct_t { int bal; };

shared struct acct_t accts[MAX_ACCT];

int id,amt;

if (accts[id].bal >= amt)

{

accts[id].bal -= amt;

spew_cash();

}

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

6:

Review: TLP

1Keyword in C is “volatile”

Thread level parallelism (TLP)

• We exploited parallelism at the instruction
level (ILP)
– Hardware can’t find TLP.

• Complier/programmer needs to find it (we lack the
window size)

• Compilers getting better at this.

– But hardware can take advantage of TLP
• Run on multiple cores

• If data is shared, provide rules to the software about
what it can assume about shared data.

Review: TLP

Review:
Why Shared Memory?

Pluses:

– For applications looks like multitasking uniprocessor

– For OS only evolutionary extensions required

– Easy to do communication without OS

– Software can worry about correctness first then performance

Minuses:

– Proper synchronization is complex

– Communication is implicit so harder to optimize

– Hardware designers must implement

Result:

– Traditionally bus-based Symmetric Multiprocessors (SMPs), and now the CMPs
are the most success parallel machines ever

– And the first with multi-billion-dollar markets

Review: Shared memory vs. message passing

Alternative to shared memory?

• Explicit message passing

– Rather difficult to code

• We’ll not be doing
anything with it

– But while not a 470
topic, it is important.
• Graduate level parallel

programming class covers
this in detail.

Review: Shared memory vs. message passing

But shared memory systems have their
own problems

• Two in particular

– Cache coherence

– Memory consistency model

• Different solutions depending on interconnect

– So let’s do interconnect now, and jump back to
these two later.

Review: Shared memory vs. message passing

Review:
Interconnect

• There are many ways to connect processors.
– Shared network

• Bus-based

• Crossbar

– Point-to-point
• More topologies than I want to think about

– Mesh (in any amount of dimensionality)

– Torus (in any amount of dimensionality)

– nCube

– Tree

– etc. etc. etc. etc.

Review: Interconnect

Shared vs. Point-to-Point Networks
• Shared network: e.g., bus (left)

+ Low latency
– Low bandwidth: doesn’t scale beyond ~8 processors
+ Shared property simplifies cache coherence protocols (later)

• Point-to-point network: e.g., mesh or ring (right)
– Longer latency: may need multiple “hops” to communicate
+ Higher bandwidth: scales to 1000s of processors
– Cache coherence protocols are complex

CPU($)

Mem

CPU($)

Mem R

CPU($)

Mem R

CPU($)

MemR

CPU($)

MemR

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem RRRR

Review: Interconnect

Organizing Point-To-Point Networks
• Network topology: organization of network

– Tradeoff performance (connectivity, latency, bandwidth)  cost

• Router chips

– Networks that require separate router chips are indirect

– Networks that use processor/memory/router packages are direct

+ Fewer components, “Glueless MP”

• Point-to-point network examples

– Indirect tree (left)

– Direct mesh or ring (right)

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

MemR RRR

R

R

R

CPU($)

Mem R

CPU($)

Mem R

CPU($)

MemR

CPU($)

MemR

Review: Interconnect

Context:
Bandwidth

• As in the uniprocessor we need caches

– To reduce average memory latency.

• But recall caches are also important for
reducing bandwidth.

– And now we’ve got (say) 4x as many requests

• And the total amount of bandwidth is shrinking (why?)

– We’ve probably got a bandwidth problem.

• It’s important that caches work well!
CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem RRRR

Review: Bandwidth!

Hardware Cache Coherence

• Coherence controller:

– Examines bus traffic (addresses and
data)

– Executes coherence protocol

• What to do with local copy when you
see different things happening on bus

CPU

D
$

 d
at

a

D
$

 t
ag

s

CC

bus

Review: Coherence!

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Scalability problems of Snoopy Coherence

• Prohibitive bus bandwidth
 Required bandwidth grows with # CPUS…

 … but available BW per bus is fixed

 Adding busses makes serialization/ordering hard

• Prohibitive processor snooping bandwidth
 All caches do tag lookup when ANY processor accesses memory

 Inclusion limits this to L2, but still lots of lookups

• Upshot: bus-based coherence doesn’t scale beyond 8–16 CPUs

Coherence: Bus-based bandwidth issues

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Scalable Cache Coherence

• Scalable cache coherence: two part solution

• Part I: bus bandwidth
 Replace non-scalable bandwidth substrate (bus)…

 …with scalable bandwidth one (point-to-point network, e.g., mesh)

• Part II: processor snooping bandwidth
 Interesting: most snoops result in no action

 Replace non-scalable broadcast protocol (spam everyone)…

 …with scalable directory protocol (only spam processors that care)

Review: Coherence!

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Directory Coherence Protocols

• Observe: physical address space statically partitioned
+ Can easily determine which memory module holds a given line

 That memory module sometimes called “home”

– Can’t easily determine which processors have line in their caches

 Bus-based protocol: broadcast events to all processors/caches
± Simple and fast, but non-scalable

• Directories: non-broadcast coherence protocol
 Extend memory to track caching information

 For each physical cache line whose home this is, track:
 Owner: which processor has a dirty copy (I.e., M state)
 Sharers: which processors have clean copies (I.e., S state)

 Processor sends coherence event to home directory
 Home directory only sends events to processors that care

Coherence: Directory-based

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Read Processing

Read A (miss)
Node #1 Directory Node #2

A: Shared, #1

Coherence: Directory-based

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Write Processing

Read A (miss)
Node #1 Directory Node #2

A: Shared, #1

Trade-offs:

• Longer accesses (3-hop between Processor, directory, other Processor)

• Lower bandwidth → no snoops necessary

Makes sense either for CMPs (lots of L1 miss traffic)
or large-scale servers (shared-memory MP > 32 nodes)

A: Mod., #2

Coherence: Directory-based

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Serialization and Ordering

Let A and flag be initially 0

P1 P2

A += 5 while (flag == 0)

flag = 1 print A

Assume A and flag are in different cache blocks

What happens?

How do you implement it correctly?

Coherence: Directory-based

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Coherence vs. Consistency

Intuition says loads should return latest value
 what is latest?

Coherence concerns only one memory location

Consistency concerns apparent ordering for all locations

A Memory System is Coherent if
 can serialize all operations to that location such that,

 operations performed by any processor appear in program order
 program order = order defined program text or assembly code

 value returned by a read is value written by last store to that
location

Coherence vs. Consistency

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Why Coherence != Consistency

/* initial A = B = flag = 0 */

P1 P2

A = 1; while (flag == 0); /* spin */

B = 1; print A;

flag = 1; print B;

Intuition says printed A = B = 1

Coherence doesn’t say anything. Why?

Your uniprocessor ordering mechanisms (ld/st queue) hurts here.
Why?

Coherence vs. Consistency

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Sequential Consistency (SC)

switch randomly set
after each memory op
provides single sequential
order among all operations

processors
issue
memory
ops
in
program
order

P1 P2 P3

Memory

Consistency

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Sufficient Conditions for SC

Every proc. issues memory ops in program order

Memory ops happen (start and end) atomically
 must wait for store to complete before issuing next memory op

 after load, issuing proc waits for load to complete, before issuing next op

Easily implemented with a shared bus

Consistency

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Relaxed Memory Models

Motivation with Directory Protocols
 Misses have longer latency (do cache hits to get to next miss)

 Collecting acknowledgements can take even longer

Recall SC has
 Each processor generates at total order of its reads and writes

(R-->R, R-->W, W-->W, & W-->R)

 That are interleaved into a global total order

Example Relaxed Models

PC: Relax ordering from writes to (other proc’s) reads

RC: Relax all read/write orderings (but add “fences”)

Consistency

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Locks

Locks

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Lock-based Mutual Exclusion

xf
er

C
rit

. s
ec

re
le

as
e

Acquire starts

w
ai

t

w
ai

t

xf
er

C
rit

. s
ec

re
le

as
e

xf
er

C
rit

. s
ec

Acquire done

Release starts

Release done

Synchronization

period

No contention:
• Want low latency

Contention:
• Want low period
• Low traffic
• Fairness

Locks

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

How Not to Implement Locks

•LOCK

while (lock_variable == 1);

lock_variable = 1

•UNLOCK

lock_variable = 0;

Context switch!

Locks

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Solution: Atomic Read-Modify-Write

• Test&Set(r,x)
{r=m[x]; m[x]=1;}

• Fetch&Op(r1,r2,x,op)
{r1=m[x]; m[x]=op(r1,r2);}

• Swap(r,x)
{temp=m[x]; m[x]=r; r=temp;}

• Compare&Swap(r1,r2,x)
{temp=r2; r2=m[x]; if r1==r2 then m[x]=temp;}

• r is register
• m[x] is memory location x

Locks

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Write a lock and unlock with
test-and-set

• Lock:

• unlock:

Locks

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Implementing RMWs

• Bus-based systems:
 Hold bus and issue load/store operations without any intervening

accesses by other processors

• Scalable systems
 Acquire exclusive ownership via cache coherence

 Perform load/store operations without allowing external coherence
requests

Locks

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Test-and-Set Spin Lock (T&S)

• Lock is “acquire”, Unlock is “release”

• acquire(lock_ptr):

while (true):

// Perform “test-and-set”

old = compare_and_swap(lock_ptr, UNLOCKED, LOCKED)

if (old == UNLOCKED):

break // lock acquired!

// keep spinning, back to top of while loop

• release(lock_ptr):

store[lock_ptr] <- UNLOCKED

• Performance problem
 CAS is both a read and write; spinning causes lots of invalidations

Locks

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Load Locked / Store Conditional
(LL/SC)

• Sometimes having an atomic read/modify/write operation isn’t
viable.
 Maybe your memory system just doesn’t support it

 Maybe it involves a very expensive “lock out” that prevents any
other memory operation until the lock finishes.

• Still possible to manage with a two step process
 Do a special load called a “load lock” or load “link”.

 Works like a normal load but it tells the hardware to watch for a store to
that same address.

 Do a “store conditional” to the same address
 If there was a store to that location since the load lock, the store “fails”

and that failure is communicated to the programmer (store has a
destination register)

❑ Failed store doesn’t write to memory

 Now we know if the load and store was effectively atomic.

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Load-Locked Store-Conditional

• Load-locked
 Issues a normal load…
 …and sets a flag and address field

• Store-conditional
 Checks that flag is set and address matches

 If so, performs store and sets store register to 1.
 Otherwise sets store register to 0.

• Flag is cleared by
 Invalidation
 Cache eviction
 Context switch

lock: lda r2, #1

ll r1, lock_variable

sc lock_variable, r2

beqz r2, lock

neqz r1, lock // branch not equal to zero

unlock:st lock_variable, #0

Locks

© Brehob -- Portions © Falsafi, Hill, Hoe, Lipasti, Martin,

Roth, Shen, Smith, Sohi, Vijaykumar, Wenisch

Next up: Static Optimizations

•Why might we want to start loads early?
Moving loads to happen earlier is called “hoisting”

•What three things limits a complier’s ability to
hoist a load?

