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Announcements

• Quiz 

– Tuesday 4/2

– Coverage the same as the last homework

• Or maybe a bit from earlier



The big picture

• We’ve spent a lot of time learning about dynamic 
optimizations
– Finding ways to improve ILP in hardware

• Out-of-order execution
• Branch prediction

• But what can be done statically (at compile 
time)?
– As hardware architects it behooves us to understand 

this.
• Partly so we are aware what things software is likely to be 

better at.
• But partly so we can find ways to find hardware/software 

“synergy” 



Some ways a compiler can help

• Improve locality of data

• Remove instructions that aren’t needed

• Reduce number of branches executed

• Many others



Improve locality of reference

o Examples:

o Loop interchange—flip 
inner and outer loops

o Loop fission—split into 
multiple loops 

Some examples taken from Wikipedia

for i from 0 to 10 

for j from 0 to 20 

a[j,i] = i + j

for j from 0 to 20 

for i from 0 to 10 

a[j,i] = i + j



Removing code (1/2)

• Register optimization

– Registers are fast, and 
doing “spills and fills” is 
slow.  

– So keep the data likely to 
be used next in registers.

• Loop invariant code 
motion

– Move recomputed 
statements outside of 
the loop.

for (int i=0; i<n; i++) {

x = y+z; 

a[i] = 6*i+x*x; 

}

x = y+z; 

for (int i=0; i<n; i++) {

a[i] = 6*i+x*x; 

} 



Removing code (2/2)

• Common sub-expression elimination
– (a + b) - (a + b)/4

• Just compute a+b once.

• Constant folding

– Replace (3+5) with 8.



Reducing number of branches 
executed

• Using predicates or CMOVs instead of short 
branches

• Loop unrolling
for(i=0;i<10000;i++)

{

A[i]=B[i]+C[i];

}

for(i=0;i<10000;i=i+2)

{

A[i]=B[i]+C[i];

A[i+1]=B[i+1]+C[i+1];

}



We’ll mostly focus on one thing

• “Hoist” loads

– That is move the loads up so if there is a miss we 
can hide that latency.

• Very similar goal to our OoO processor.

xxxxx

xxxxx

LD R1=MEM[x]

R2=R1+R3

LD R1=MEM[x]

xxxxx

xxxxx

R2=R1+R3



What limits our ability to hoist a load?

– ________________________________________

– _________________________________________

– _________________________________________



Create room to move code around

• Loop unrolling

– The idea is to take a loop (usually a short loop) 
and do two or more iterations in a single loop 
body.

Initial 
Loop
body

for i=1 to 10000 
{

}

for i=1 to 5000 
{

Loop body

Loop body

}

“Glue” logic



Unroll this loop 

for(i=0;i<10000;i++)

{

A[i]=B[i]+C[i];

n+=A[i];

}

Glue logic?  Reduce operations?



What does unrolling buy us?

• Reduces number of branches• Reduces number of branches

– Less to (mis-)predict

– If not predicting branches (say cheap embedded 
processor) very helpful!

– If limited number of branches allowed in ROB at a 
time, reduces this problem.

• Can schedule for pipeline better

– If superscalar might be best to combine certain 
operations.  Loop unrolling adds flexibility



What does it cost us?

• Code space.

– Mainly worried about impact on I-cache hit rate.  
But L2 or DRAM impact if unroll too much!

• If loop body has branches in it can hurt branch 
prediction performance.

• Other?



Another one to unroll.

for(i=0;i<99999;i++)

{

A[i]=B[i]+C[i];

B[i+1]=C[i]+D[i];

}



One more to do

while (B[i]!=0)

{

i++;

A[i]=B[i]+C[i];

B[i+1]=C[i]+D[i];

}



How about this code?

Loop: r1=MEM[r2+0]

r1=r1*2

MEM[r2+0]=r1

r2=r2+4

bne r2 r3 Loop 

We’ll come back to this later…



Other ILP techniques

• Consider an in-order superscalar processor executing 
the following code:

R1=16 //A

R2=R1+5 //B

R3=14 //C

R4=R3+5 //D

– Without OoO we would execute A, BC, D.

– Note that A&B are independent of C&D.  So ordering ACBD 
would let us do AC, BD.

• Thus, the simple action of reordering instructions can 
increase ILP.



So…

• We can expose ILP by 

– Unrolling loops

– Reordering code 

• To increase # of independent instructions near each 
other

• To move a load (or other high-latency instruction) from 
its use.

– What limits reordering options?



The limits of hoisting loads (again)

• Moving code outside of its “basic block” is scary
– In other words, moving code past branches or branch targets can give 

wrong execution
• Loads or stores might go to invalid locations
• Need to be sure don’t trash a needed register.

• Also
– Moving loads past stores is scary

• What if store wrote to that address

• The problem is that we don’t have the recovery mechanisms 
we do in hardware
– After all, the program specifies behavior!  How do we know when the 

specified behavior is “wrong”?
• In hardware it is fairly easy…



Static dependency checking

• A superscalar processor has to do certain 
dependency checking at issue (or dispatch)
– Is a given set of instructions dependent on each 

other?
– If ALU resources are shared are there enough 

resources?

• Many of these issues can be resolved at 
compile time.
– What can’t be resolved?
– Once resolved, how do you tell the CPU?



One static solution: VLIW

• Have a bunch of pipelines, usually with 
different functional units.

– Each “instruction” actually contains directions for 
all the pipelines.

– (Thus the “very long instruction”)

Pipe1 – int
Pipe2 – int
Pipe3 – fp
Pipe4 – ld/st
Pipe5 – branch

VLIW
Instruction
word



What’s good about VLIW?

• Compiler does all dependency checking, 
including structural hazards!
– No dependence checking makes the hardware a 

lot simpler!
• Reduces mis-prediction penalty.

• Saves power

• May save area!

• Since the compiler can also reorder 
instructions we may be able to make good use 
of the pipes.



So what’s bad?

• Code density

– If you can’t fill a given pipe, need a no-op.

– To get the ILP needed to be able to fill the pipe, 
often need to unroll loops.

• When a newer processor comes out, 100% 
compatibility is hard

– Word length may need to change

– Structural dependencies may be different



Conditional execution

• Conditional execution (we’ve 
done this before!)

bne r1 r2 skip

r4=r5+r6

skip: r7=r4+r12

r8=cmp(r1,r2)

if(r8) r4=r5 + r6

r7=r4+r12

-or-

r8=cmp(r1,r2)

r9=r5+r6

cmov (r8, r4  r9)

r7=r4+r12



Software pipelining



Code example from before

Loop: r1=MEM[r2+0]

r1=r1*2

MEM[r2+0]=r1

r2=r2+4

bne r2 r3 Loop 

And one name 

dependency 

on r2.  

Also the store 

is dependent on

r2 but hidden…



ILP?

r1=MEM[r2+0]  //A

r1=r1*2              //B

MEM[r2+0]=r1 //C

r2=r2+4             //D

bne r2 r3 Loop //E

• Currently no two 
instructions can be 
executed in parallel on a 
statically scheduled 
machine.
– (With branch prediction A 

and E could be executed in 
parallel)

• On a dynamically scheduled 
machine could execute 
instructions from different 
iterations at once.



What would OoO do?

r1=MEM[r2+0]  //A

r1=r1*2              //B

MEM[r2+0]=r1 //C

r2=r2+4             //D

bne r2 r3 Loop //E

• A perfect, dynamically scheduled, 
speculative computer would find 
the following:

Let A1 indicate the 

execution of A in the 

first iteration of the 

loop.

A1 D1

B1 A2 D2 E1

C1 B2 A3 D3 E2

C2 B3 A4 D4 E3

….. ….. ….. ….. …..



r1=MEM[r2+0]  //A

r1=r1*2              //B

MEM[r2+0]=r1 //C

r2=r2+4             //D

bne r2 r3 Loop //E

Software Pipeline

• With “software pipelining” 
we can do the same thing in 
software.

MEM[r2+0]=r1 //C(n)

r1=r4*2              //B(n+1)

r4=MEM[r2+8]  //A(n+2)

r2=r2+4             //D(n)

bne r2 r3 Loop //E(n)

What problems 

could arise?

• “Speculative load”

might cause an exception.

• Latency of load could be 

too slow. 



Prolog and epilog
r3=r3-8                        // Needed to check legal!
r4=MEM[r2+0] //A(1)

r1=r4*2 //B(1)

r4=MEM[r2+4] //A(2)

Loop: MEM[r2+0]=r1 //C(n)

r1=r4*2              //B(n+1)

r4=MEM[r2+8]  //A(n+2)

r2=r2+4             //D(n)

bne r2 r3 Loop //E(n)

MEM[r2+0]=r1 // C(x-1)

r1=r4*2 // B(x)

MEM[r2+0]=r1 // C(x)

r3=r3+8 // Could have used tmp var.



Software Pipelining example

Execution           Code Layout             Action          

Flow

Stage A

Stage B

Stage C

Stage A

Stage B Stage A

Stage C

Stage C

Stage B

Stage C
Stage D

Stage D

Stage D Stage C Stage B Stage A

iter1

iter0

II

Prologue

Kernel

Epilogue

itern-2
itern-1



Example, just to be sure.

r4=MEM[r2+0] //A1

r1=r4*2 //B1

r4=MEM[r2+4] //A2

Loop: MEM[r2+0]=r1 //C(n)

r1=r4*2              //B(n+1)

r4=MEM[r2+8]  //A(n+2)

r2=r2+4             //D(n)

bne r2 r3 Loop //E(n)

ADDR DATA

12 55

16 23

20 19

24 -5

R2=12, r3=28

R4=_______      R1= _______



Next step

• Parallel execution
– It isn’t clear how D and E of any 

iteration can be executed in 
parallel on a statically scheduled 
machine

• What if load latency is too 
long?
– Will be stalling a lot…

– Fix by unrolling loop some.

r1=MEM[r2+0]  //A

r1=r1*2              //B

MEM[r2+0]=r1 //C

r2=r2+4             //D

bne r2 r3 Loop //E



NEXT…

• Let’s now jump from Software Pipelining to IA-
64.

– We will come back to Software Pipelining in the 
context of IA-64…

– We will redo the IA-64 stuff from the start for next 
lecture

• Not sure how far I’ll get into it today.



IA-64

• 128 64-bit registers

– Use a register window similarish to SPARC

• 128 82 bit fp registers

• 64 1 bit predicate registers

• 8 64-bit branch target registers



Explicit Parallelism

• Groups
– Instructions which could be executed in parallel if 

hardware resources available.

• Bundle
– Code format.  3 instructions fit into a 128-bit 

bundle.

– 5 bits of template, 41*3 bits of instruction.
• Template specifies what execution units each 

instruction requires.



Instructions

• 41 bits

– 4 high order specify opcode (combined with 
template for bundle)

– 6 low order bits specify predicate register number.

• Every instruction is predicated!

• Also NaT bits are used to handle speculated 
exceptions. 



Speculative Load

Traditional IA-64

• Load instruction (ld.s) 
can be moved outside 
of a basic block even if 
branch target is not 
known

• Speculative loads 
does not produce 
exception - it sets the 
NaT 

• Check instruction 
(chk.s) will jump to fix-
up code if NaT is set



Propagation of  NaT

• IF ( NaT[r3] || NaT[r4] ) THEN set NaT[r6]

• IF ( NaT[r6] ) THEN set NaT[r5]

• Require check on NaT[r5] only since the NaT is inherited

• Reduce number of checks

• Fix-up will execute the entire chain

Only single check required

NaT[reg] = NaT bit of reg



Advanced loads

• ld.a – Advanced load

– Performs the load, puts it into the “ALAT”

• If any following store writes to the same address, this is 
noted with a single bit.

• When a ld.c  is executed, if that bit is set, we refetch.

• When chk.a is executed, if bit is set, fix up code is run.  
(Useful if load result already used.)

• Both also cause any deferred exception to occur.



Software pipelining on IA-64

• Lots of tricks 

– Rotating registers

– Special counters

• Often don’t need Prologue and Epilog. 

– Special counters and prediction lets us only 
execute those instructions we need to.


