
Multithreading Processors

and Static Optimization Review

Adapted from Bhuyan, 

Patterson, Eggers, probably 

others



Class stuff

• CATME due today.

– It’s probably the most points per unit effort in the class. Do it.

• Quiz hopefully graded by tomorrow.

• HW5 out tomorrow, pushing due date to 4/23

• MS3 due Thursday 4/11

– Meetings optional-ish.

• Lecture schedule:

– 4/4: Multithreaded processors

– 4/9: ISA

– 4/11: Instruction scheduling (with a paper)

– 4/16: No lecture (probably)

– 4/18 Exam review

– 4/23 Oral Presentations



Today

• Finish IA-64

• Review Complier stuff

• SMT



IA-64

• 128 64-bit registers

– Use a register window similarish to SPARC

• 128 82 bit fp registers

• 64 1 bit predicate registers

• 8 64-bit branch target registers



Explicit Parallelism

• Groups

– Instructions which could be executed in parallel 
if hardware resources available.

• Bundle

– Code format.  3 instructions fit into a 128-bit 
bundle.

– 5 bits of template, 41*3 bits of instruction.

• Template specifies what execution units each 
instruction requires.



Instructions

• 41 bits

– 4 high order specify opcode (combined with 

template for bundle)

– 6 low order bits specify predicate register 

number.

• Every instruction is predicated!

• Also NaT bits are used to handle speculated 

exceptions. 



Speculative Load

Traditional IA-64

• Load instruction (ld.s) 
can be moved outside 
of a basic block even if 
branch target is not 
known

• Speculative loads 
does not produce 
exception - it sets the 
NaT 

• Check instruction 
(chk.s) will jump to fix-
up code if NaT is set



Propagation of  NaT

• IF ( NaT[r3] || NaT[r4] ) THEN set NaT[r6]

• IF ( NaT[r6] ) THEN set NaT[r5]

• Require check on NaT[r5] only since the NaT is 
inherited

• Reduce number of checks

• Fix-up will execute the entire chain

Only single check required

NaT[reg] = NaT bit of reg



Advanced loads

• ld.a – Advanced load

– Performs the load, puts it into the “ALAT”

• If any following store writes to the same address, 

this is noted with a single bit.

• When a ld.c  is executed, if that bit is set, we refetch.

• When chk.a is executed, if bit is set, fix up code is 

run.  (Useful if load result already used.)

• Both also cause any deferred exception to occur.



Software pipelining on IA-64

• Lots of tricks 

– Rotating registers

– Special counters

• Often don’t need Prologue and Epilog. 

– Special counters and prediction lets us only 

execute those instructions we need to.



Static optimization and IA64 

review

• There are many important compiler 

techniques

– We focused on hoisting loads.

– But other include:

• Register allocation (to reduce spills and fills)

• Common sub-expression elimination

– Wikipedia’s article on optimizing compliers 

provides a nice overview of standard 

optimizations.



How does static compare to 

dynamic?

• Static 

– Has “a larger window” as it can see the whole 

program at once.

– Can change the instructions executed.

• Dynamic

– Has dynamic information

– “Can be wrong”



That said problems are similar

• Static can reduce number of instructions, 

but for a given set of instructions, it is 

trying to optimize ILP just as dynamic does.

– That will mean reordering instructions.

– Suffers the same problems hardware does

• Memory dependencies and branches.



• add r15 = r2,r3 //A

• mult r4 = r15,r2    //B

• mult r4 = r4,r4      //C

• st8 [r12] = r4      //D

• ld8 r5 = [r15]      //E

• div r6 = r5,r7      //F

• add r5 = r6,r2 //G

Assume latencies are:

add, store: +0

mult, div: +3

ld: +4

A:1

D:1

G:1

C:4

E:5B:4

F:4

20

11 10

Why can hoisting loads help? 



IA 64 support

• Why is hoisting above a branch hard?

– _____________________

– IA64 solution? 

• Speculative load

• Why is hoisting above a store hard?

– __________________________

– IA64 solution:

• Advanced load



Other things we did

• Software pipelining

– Idea, example

• Discussed register pressure

– Idea, examples where optimization make it 

worse, IA64 “solution” (lots of registers…)

• Briefly discussed caching

– Code size increase is a common side effect of 

complier optimizations

– Optimizing for locality is good.



On to multi-threading



Pipeline Hazards
LW r1, 0(r2)

LW r5, 12(r1)

ADDI r5, r5, #12

SW 12(r1), r5

• Each instruction may depend on the next

– Without forwarding, need stalls

LW r1, 0(r2)

LW r5, 12(r1)

ADDI r5, r5, #12

SW 12(r1), r5

• Bypassing/forwarding cannot completely eliminate 

interlocks or delay slots



Multithreading

• How can we guarantee no dependencies between 

instructions in a pipeline?

– One way is to interleave execution of instructions from 

different program threads on same pipeline

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

T1: LW r1, 0(r2)

T2: ADD r7, r1, r4

T3: XORI r5, r4, #12

T4: SW 0(r7), r5

T1: LW r5, 12(r1)



CDC 6600 Peripheral 
Processors (Cray, 1965)

• First multithreaded hardware

• 10 “virtual” I/O processors

• fixed interleave on simple pipeline

• pipeline has 100ns cycle time

• each processor executes one 
instruction every 1000ns

• accumulator-based instruction set to 
reduce processor state



Simple Multithreaded 

Pipeline

• Have to carry thread select down pipeline to 

ensure correct state bits read/written at each pipe 

stage



Multithreading Costs

• Appears to software (including OS) as 
multiple slower CPUs

• Each thread requires its own user state
– GPRs

– PC

• Other costs?



Thread Scheduling Policies

• Fixed interleave (CDC 6600 PPUs, 1965)
– each of N threads executes one instruction every N cycles

– if thread not ready to go in its slot, insert pipeline bubble

• Software-controlled interleave (TI ASC PPUs, 1971)
– OS allocates S pipeline slots amongst N threads

– hardware performs fixed interleave over S slots, executing 
whichever thread is in that slot

• Hardware-controlled thread scheduling (HEP, 1982)
– hardware keeps track of which threads are ready to go

– picks next thread to execute based on hardware priority

scheme



What “Grain” 

Multithreading?
• So far assumed fine-grained 

multithreading

– CPU switches every cycle to a different thread

– When does this make sense?

• Coarse-grained multithreading

– CPU switches every few cycles to a different 

thread

– When does this make sense?



Multithreading Design 

Choices

• Context switch to another thread every cycle, or on 
hazard or L1 miss or L2 miss or network request

• Per-thread state and context-switch overhead

• Interactions between threads in memory hierarchy



Denelcor HEP
(Burton Smith, 1982)

• First commercial machine to use 

hardware threading in main CPU

– 120 threads per processor

– 10 MHz clock rate

– Up to 8 processors

– precursor to Tera MTA (Multithreaded 

Architecture)



Tera MTA Overview

• Up to 256 processors

• Up to 128 active threads per processor

• Processors and memory modules 
populate a 3D torus interconnection fabric

• Flat, shared main memory
– No data cache

– Sustains one main memory access per cycle 
per processor

• 50W/processor @ 260MHz



MTA Instruction Format

• Three operations packed into 64-bit instruction word 
(short VLIW)

• One memory operation, one arithmetic operation, plus 
one arithmetic or branch operation

• Memory operations incur ~150 cycles of latency

• Explicit 3-bit “lookahead” field in instruction gives 
number of subsequent instructions (0-7) that are 
independent of this one
– c.f. Instruction grouping in VLIW

– allows fewer threads to fill machine pipeline

– used for variable- sized branch delay slots

• Thread creation and termination instructions



MTA Multithreading

• Each processor supports 128 active hardware 
threads
– 128 SSWs, 1024 target registers, 4096 general-purpose 

registers

• Every cycle, one instruction from one active 
thread is launched into pipeline

• Instruction pipeline is 21 cycles long

• At best, a single thread can issue one instruction 
every 21 cycles
– Clock rate is 260MHz, effective single thread issue rate 

is 260/21 = 12.4MHz



Speculative, Out-of-Order 

Superscalar Processor



P6 Performance: uops commit/clock

Average
0: 55%
1:  13%
2:   8%
3: 23%

Integer
0: 40%
1:  21%
2: 12%
3: 27%

0% 20% 40% 60% 80% 100%

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

0 uops commit

1 uop commits

2 uops commit

3 uops commit



Superscalar Machine Efficiency

• Why horizontal waste?

• Why vertical waste?



Vertical Multithreading

• Cycle-by-cycle interleaving of second 
thread removes vertical waste



Ideal Multithreading for Superscalar

• Interleave multiple threads to 
multiple issue slots with no 
restrictions



Simultaneous 

Multithreading
• Add multiple contexts and fetch engines 

to wide out-of-order superscalar 

processor

– [Tullsen, Eggers, Levy, UW, 1995]

• OOO instruction window already has most 

of the circuitry required to schedule from 

multiple threads

• Any single thread can utilize whole 

machine



Comparison of Issue Capabilities
Courtesy of Susan Eggers



From Superscalar to SMT

• SMT is an out-of-order superscalar extended with

hardware to support multiple executing threads



From Superscalar to SMT

• Small items

– per-thread program counters

– per-thread return address stacks

– per-thread bookkeeping for instruction 

retirement, trap & instruction dispatch 

queue flush

– thread identifiers, e.g., with BTB & TLB 

entries



Simultaneous Multithreaded 

Processor



SMT Design Issues

• Which thread to fetch from next?

– Don’t want to clog instruction window 
with thread with many stalls → try to 
fetch from thread that has fewest insts 
in window

• Locks

– Virtual CPU spinning on lock executes 
many instructions but gets nowhere →
add ISA support to lower priority of 
thread spinning on lock



Intel Pentium-4 Xeon Processor

• Hyperthreading == SMT

• Dual physical processors, each 2-way SMT

• Logical processors share nearly all resources of 
the physical processor
– Caches, execution units, branch predictors

• Die area overhead of hyperthreading ~5 %

• When one logical processor is stalled, the other 
can make progress
– No logical processor can use all entries in queues when 

two threads are active

• A processor running only one active software 
thread to run at the same speed with or without 
hyperthreading

• “Death by 1000 cuts”
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1% to 60% instructions do not commit: 20% avg (30% integer)

And things to think about:

Wider in the front…
P6:  (% instructions dispatched that do not commit)


