Multithreading Processors
and Static Optimization Review

Adapted from Bhuyan,
Patterson, Eggers, probably
others

Class stuff

CATME due today.

— It’s probably the most points per unit effort in the class. Do it.
Quiz hopefully graded by tomorrow.

HWS5 out tomorrow, pushing due date to 4/23
MS3 due Thursday 4/11

— Meetings optional-ish.

Lecture schedule:

— 4/4: Multithreaded processors

— 4/9: ISA

— 4/11: Instruction scheduling (with a paper)

— 4/16: No lecture (probably)

— 4/18 Exam review

— 4/23 Oral Presentations

Today

* Finish |A-64
« Review Complier stuff

« SMT

|A-64

128 64-bit registers
— Use a register window similarish to SPARC

128 82 bit fp registers
64 1 bit predicate registers
8 64-bit branch target registers

Explicit Parallelism

o Groups

— Instructions which could be executed in parallel
If hardware resources available.

e Bundle

— Code format. 3 instructions fit into a 128-bit
bundle.
— 5 bits of template, 41*3 bits of instruction.

« Template specifies what execution units each
Instruction requires.

Instructions

e 41 hits

— 4 high order specify opcode (combined with
template for bundle)

— 6 low order bits specify predicate register
number.

 Every instruction is predicated!

« Also NaT bits are used to handle speculated
exceptions.

Speculative Load

« Load instruction (ld.s)

can be moved outside 48 r1=[2
of a basic block even if use 1
branch target is not instrA s
known nstrd -

* Speculative loads ” |
does not produce Samer
exception - it sets the /
N aT Id& r11=[r2] chk.s

 Check instruction
(chk.s) will jump to fix- .
up code if NaT is set Traditional |A-64

Propagation of NaT

Id8.s r3 =[r9]
Id8.s r4 =[r10]
add r6 =r3, r4
Id8.s r5 =[r6]

p1,p2 = cmp(...) Only single check required

chk.s r5
sub r7 =r5,r2 NaT[reg] = NaT bit of reg

IF (NaT[r3] || NaT[r4]) THEN set NaT|[r6]
IF (NaT[r6]) THEN set NaT[r5]

Require check on NaT[r5] only since the NaT is
Inherited

Reduce number of checks
Fix-up will execute the entire chain

Advanced loads

e |d.a— Advanced load

— Performs the load, puts 1t into the “ALAT”

« If any following store writes to the same address,
this is noted with a single bit.

« When a ld.c is executed, if that bit is set, we refetch.

« When chk.a is executed, If bit is set, fix up code is
run. (Useful if load result already used.)

 Both also cause any deferred exception to occur.

Software pipelining on 1A-64

* Lots of tricks
— Rotating registers
— Special counters

* Often don’t need Prologue and Epilog.

— Special counters and prediction lets us only
execute those instructions we need to.

Static optimization and 1A64
review

* There are many important compiler
techniques

— We focused on hoisting loads.

— But other include:
 Register allocation (to reduce spills and fills)
« Common sub-expression elimination
— Wikipedia’s article on optimizing compliers
provides a nice overview of standard
optimizations.

How does static compare to
dynamic?
o Static

— Has *““a larger window” as 1t can see the whole
program at once.

— Can change the instructions executed.
* Dynamic
— Has dynamic information

— “Can be wrong”

That said problems are similar

o Static can reduce number of instructions,
but for a given set of instructions, It Is
trying to optimize ILP just as dynamic does.
— That will mean reordering instructions.

— Suffers the same problems hardware does
» Memory dependencies and branches.

Why can hoisting loads help?

« add r15=r2,r3
« multrd =ri15,r2
e multrd=r4d,r4d
e st8[r12]=r4

* |d8 r5=[rl15]

e divré=r5,r7

e add r5=r6,r2

1A
/IB
/IC
/1D
IIE
IIF
/1G

Assume latencies are:

add, store: +0
mult, div: +3
Id: +4

|A 64 support

« Why Is hoisting above a branch hard?

— 1A64 solution?
 Speculative load

« Why Is hoisting above a store hard?

— |A64 solution:
e Advanced load

Other things we did

« Software pipelining
— ldea, example

 Discussed register pressure

— ldea, examples where optimization make it
worse, IA64 “solution” (lots of registers...)

 Briefly discussed caching

— Code size increase IS a common side effect of
complier optimizations

— Optimizing for locality is good.

On to multi-threading

Pipeline Hazards

LW rl, 0(r2)

LW r5, 12(rl)
ADDI r5, r5, #12
SW 12(rl1), r5

Each instruction may depend on the next

— Without forwarding, need stalls
A0 1112 13 14 15 16 17 8 19 110 111 112 113 t14,

LW rl, 0(r2)

LW r5, 12(rl)
ADDI r5, r5, #12
SW 12(rl1), r5

Bypassing/forwarding cannot completely eliminate
Interlocks or delay slots

|
FID|X|M|wW N l:
. |F|D|D|D[D|X|MW| | | i
}l F|IF|F|F|D/D|/D|D|X|M |
IIIIII FIF|IF|F|D|D D

Multithreading

« How can we guarantee no dependencies between

Instructions in a pipeline?

— One way is to interleave execution of instructions from
different program threads on same pipeline

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

T1: LWrl, 0(r2)
T2: ADDr7,r1, r4

T3: XORI 15, r4, #12 !

T4: SW 0(r7), r5
T1: LWr5, 12(rl)

10t 2 13 4 g5 ina r? ItE It'EI
FID X iMW,i. . ———+ Lastinstruction
- [F|Dp|x|mM]wW] | I I in a thread

— - - ' 1 always completes
| [EIDIXAMAWE | iteback before
1 | LFEIDIX[MIW| . nextinstruction
. IF IDTXIMIW| in same thread

' reads regfile _

CDC 6600 Peripheral
Processors (Cray, 1965)

First multithreaded hardware

10 “virtual” I/O processors

fixed interleave on simple pipeline
pipeline has 100ns cycle time

each processor executes one
Instruction every 1000ns

accumulator-based instruction set to
reduce processor state

Simple Multithreaded

Pipeline

|

=]

1$

| R —=

b

GPR1 ‘ \

)

]:H_U‘

_|

H "2 Thread

select

D ‘s

A

« Have to carry thread select down pipeline to
ensure correct state bits read/written at each pipe

stage

Multithreading Costs

« Appears to software (including OS) as
multiple slower CPUs

 Each thread requires its own user state
— GPRs

— PC
e Other costs?

Thread Scheduling Policies

* Fixed interleave (CDC 6600 PPUs, 1965)

— each of N threads executes one instruction every N cycles
— 1f thread not ready to go in its slot, insert pipeline bubble

« Software-controlled interleave (TI ASC PPUs, 1971)

— OS allocates S pipeline slots amongst N threads

— hardware performs fixed interleave over S slots, executing
whichever thread is in that slot

« Hardware-controlled thread scheduling (HEP, 1982)
— hardware keeps track of which threads are ready to go
— picks next thread to execute based on hardware priority
scheme

What “Grain”
Multithreading?

« So far assumed fine-grained
multithreading

— CPU switches every cycle to a different thread
— When does this make sense?

« Coarse-grained multithreading

— CPU switches every few cycles to a different
thread

— When does this make sense?

Multithreading Design

Choices
. L1 Inst. Memory
Cache .

CPU Un:_f;d Memory
ttd Cache Memory
REF — L1 Data

Cache Memory

Context switch to another thread every cycle, or on
hazard or L1 miss or L2 miss or network request

Per-thread state and context-switch overhead
Interactions between threads in memory hierarchy

Denelcor HEP
(Burton Smith, 1982)

* First commercial machine to use
hardware threading in main CPU
— 120 threads per processor
— 10 MHz clock rate
— Up to 8 processors

— precursor to Tera MTA (Multithreaded
Architecture)

Tera MTA Overview

Up to 256 processors
Up to 128 active threads per processor

Processors and memory modules
populate a 3D torus interconnection fabric

~lat, shared main memory

— No data cache

— Sustains one main memory access per cycle
per processor

50W/processor @ 260MHz

MTA Instruction Format

Three operations packed into 64-bit instruction word
(short VLIW)

One memory operation, one arithmetic operation, plus
one arithmetic or branch operation

Memory operations incur ~150 cycles of latency

Explicit 3-bit “lookahead” field in instruction gives
number of subsequent instructions (0-7) that are
Independent of this one

Thread creation and termination instructions

MTA Multithreading

Each processor supports 128 active hardware

threads

— 128 SSWs, 1024 target registers, 4096 general-purpose
registers

Every cycle, one instruction from one active

thread is launched into pipeline

Instruction pipelineis 21 cycles long

At best, a single thread can issue one instruction
every 21 cycles

— Clock rate is 260MHz, effective single thread issue rate
IS 260/21 = 12.4MHz

Speculative, Out-of-Order
Superscalar Processor

Unit

ALU |MEM

Buffer

Out-of-Order In-Order
'S —- = & L
PC—Fetch™ Decode & |, Reorder Buffer [Commit
Rename
ln-EFc;er l I 1 I l I
Physical Reg. File
I “H” .
Branch Store

D$

Execute

P6 Performance: uops commit/clock

fpppp

waveb

0%

20%

40%

60%

80%

100%

E 0 uops commit
B 1 uop commits
@ 2 uops commit

B 3 uops commit

Average Integel
0: 55% 0: 40%
1: 130/0 1: 21%
2: 80/0 2. 120/0
3. 230/0 3: 2770

Superscalar Machine Efficiency

Issue width

Instruction
issue + bbb

e i

B

Hg:
Time 4

%%:IHH

 Why horizontal waste?
 Why vertical waste?

Completely idle cycle
(vertical waste)

Partially filled cycle,

(7] J— ie.IPC<4

(horizontal waste)

Vertical Multithreading

Issue width

Instruction
issue ITEEE

P i

___—— Second thread interleaved
cycle-by-cycle

444
Time | i}
Partially filled cycle,
E1 — i.e,IPC=<4
. (horizontal waste)

.
tehssssed

* Cycle-by-cycle interleaving of second
thread removes vertical waste

ldeal Multithreading for Superscalar

Issue width

l&% .
B |

Time

||lU.
¥
- =& F

i

L2 2

43

1l +: *:E*:
L2 Xy

* Interleave multiple threads to
multiple issue slots with no
restrictions

Simultaneous
Multithreading

 Add multiple contexts and fetch engines
to wide out-of-order superscalar
processor

« OOOQO instruction window already has most

of the circuitry required to schedule from
multiple threads

 Any single thread can utilize whole
machine

Comparison of Issue Capabillities
Courtesy of Susan Eggers

Superscalar
horizontal waste

I) s slots Tsae slons
lg:j 1= EEE
ﬁ [HE] 1
: LI HE] HEEN
E I . B
LI L] B[] I
! BEEE EEEE HEE
l L] HEN ..:--
R 1 I |
L]] N H B
/ B Thread 1 I Threadd
B Thread 2
vertical waste B Thread 3

Traditional

Single-chip
Multithresding Multiproocessor

T

Izsne slnes

L1
_ 3] In
HE NN

L]
o
]

From Superscalar to SMT

« SMT is an out-of-order superscalar extended with
hardware to support multiple executing threads

Threads Fatch IQ et
oooo nit Renaming T "‘ET_'I: E.'Eﬂa
Hx Reqgisters] Nits
I:II:II:II:I_._.-.H--'-._H ===-=§ I:l S
~ === =§E J
=== []
moEmE| -= — == []
W b s | e [[| |:|
oooo| .~ 1
[]
1

From Superscalar to SMT

« Small items
— per-thread program counters
— per-thread return address stacks

— per-thread bookkeeping for instruction
retirement, trap & instruction dispatch
gueue flush

—thread identifiers, e.g., with BTB & TLB
entries

Simultaneous Multithreaded
Processor

Rename Table 1]'u

PC Fetch Decode &
1 Rename

~* Reorder Buffer

~ Commit

Y

000 execution unit
does not see thread
identifiers, only
physical register
specifiers

¥

¥

Physical Reg. File

. | Th i1 b _—
ranc = Store
Unit ALUIMEML_ Buffer DS

Execute

SMT Design Issues

« Which thread to fetch from next?

— Don’t want to clog instruction window
with thread with many stalls = try to
fetch from thread that has fewest insts
In window

* Locks

— Virtual CPU spinning on lock executes
many instructions but gets nowhere 2>
add ISA support to lower priority of
thread spinning on lock

Intel Pentium-4 Xeon Processor

Hyperthreading == SMT
Dual physical processors, each 2-way SMT

Logical processors share nearly all resources of
the physical processor

Die area overhead of hyperthreading ~5 %

When one logical processor is stalled, the other
can make progress

A processor running only one active software
thread to run at the same speed with or without
hyperthreading

“Death by 1000 cuts”

And things to think about:
Wider in the front...

P6: (% instructions dispatched that do not commit)

go

m88ksim I

gcc

compress

li

ijpeg
perl
vortex
tomcatv
swim
su2cor
hydro2d

mgrid

applu
turb3d

apsi
fpppp

wawveb

0% 10% 20% 30% 40% 50% 60%
1%to 60%instructions do not commit: 20% avg (30%integer)

