
Multithreading Processors

and Static Optimization Review

Adapted from Bhuyan,

Patterson, Eggers, probably

others

Class stuff

• CATME due today.

– It’s probably the most points per unit effort in the class. Do it.

• Quiz hopefully graded by tomorrow.

• HW5 out tomorrow, pushing due date to 4/23

• MS3 due Thursday 4/11

– Meetings optional-ish.

• Lecture schedule:

– 4/4: Multithreaded processors

– 4/9: ISA

– 4/11: Instruction scheduling (with a paper)

– 4/16: No lecture (probably)

– 4/18 Exam review

– 4/23 Oral Presentations

Today

• Finish IA-64

• Review Complier stuff

• SMT

IA-64

• 128 64-bit registers

– Use a register window similarish to SPARC

• 128 82 bit fp registers

• 64 1 bit predicate registers

• 8 64-bit branch target registers

Explicit Parallelism

• Groups

– Instructions which could be executed in parallel
if hardware resources available.

• Bundle

– Code format. 3 instructions fit into a 128-bit
bundle.

– 5 bits of template, 41*3 bits of instruction.

• Template specifies what execution units each
instruction requires.

Instructions

• 41 bits

– 4 high order specify opcode (combined with

template for bundle)

– 6 low order bits specify predicate register

number.

• Every instruction is predicated!

• Also NaT bits are used to handle speculated

exceptions.

Speculative Load

Traditional IA-64

• Load instruction (ld.s)
can be moved outside
of a basic block even if
branch target is not
known

• Speculative loads
does not produce
exception - it sets the
NaT

• Check instruction
(chk.s) will jump to fix-
up code if NaT is set

Propagation of NaT

• IF (NaT[r3] || NaT[r4]) THEN set NaT[r6]

• IF (NaT[r6]) THEN set NaT[r5]

• Require check on NaT[r5] only since the NaT is
inherited

• Reduce number of checks

• Fix-up will execute the entire chain

Only single check required

NaT[reg] = NaT bit of reg

Advanced loads

• ld.a – Advanced load

– Performs the load, puts it into the “ALAT”

• If any following store writes to the same address,

this is noted with a single bit.

• When a ld.c is executed, if that bit is set, we refetch.

• When chk.a is executed, if bit is set, fix up code is

run. (Useful if load result already used.)

• Both also cause any deferred exception to occur.

Software pipelining on IA-64

• Lots of tricks

– Rotating registers

– Special counters

• Often don’t need Prologue and Epilog.

– Special counters and prediction lets us only

execute those instructions we need to.

Static optimization and IA64

review

• There are many important compiler

techniques

– We focused on hoisting loads.

– But other include:

• Register allocation (to reduce spills and fills)

• Common sub-expression elimination

– Wikipedia’s article on optimizing compliers

provides a nice overview of standard

optimizations.

How does static compare to

dynamic?

• Static

– Has “a larger window” as it can see the whole

program at once.

– Can change the instructions executed.

• Dynamic

– Has dynamic information

– “Can be wrong”

That said problems are similar

• Static can reduce number of instructions,

but for a given set of instructions, it is

trying to optimize ILP just as dynamic does.

– That will mean reordering instructions.

– Suffers the same problems hardware does

• Memory dependencies and branches.

• add r15 = r2,r3 //A

• mult r4 = r15,r2 //B

• mult r4 = r4,r4 //C

• st8 [r12] = r4 //D

• ld8 r5 = [r15] //E

• div r6 = r5,r7 //F

• add r5 = r6,r2 //G

Assume latencies are:

add, store: +0

mult, div: +3

ld: +4

A:1

D:1

G:1

C:4

E:5B:4

F:4

20

11 10

Why can hoisting loads help?

IA 64 support

• Why is hoisting above a branch hard?

– _____________________

– IA64 solution?

• Speculative load

• Why is hoisting above a store hard?

– __________________________

– IA64 solution:

• Advanced load

Other things we did

• Software pipelining

– Idea, example

• Discussed register pressure

– Idea, examples where optimization make it

worse, IA64 “solution” (lots of registers…)

• Briefly discussed caching

– Code size increase is a common side effect of

complier optimizations

– Optimizing for locality is good.

On to multi-threading

Pipeline Hazards
LW r1, 0(r2)

LW r5, 12(r1)

ADDI r5, r5, #12

SW 12(r1), r5

• Each instruction may depend on the next

– Without forwarding, need stalls

LW r1, 0(r2)

LW r5, 12(r1)

ADDI r5, r5, #12

SW 12(r1), r5

• Bypassing/forwarding cannot completely eliminate

interlocks or delay slots

Multithreading

• How can we guarantee no dependencies between

instructions in a pipeline?

– One way is to interleave execution of instructions from

different program threads on same pipeline

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

T1: LW r1, 0(r2)

T2: ADD r7, r1, r4

T3: XORI r5, r4, #12

T4: SW 0(r7), r5

T1: LW r5, 12(r1)

CDC 6600 Peripheral
Processors (Cray, 1965)

• First multithreaded hardware

• 10 “virtual” I/O processors

• fixed interleave on simple pipeline

• pipeline has 100ns cycle time

• each processor executes one
instruction every 1000ns

• accumulator-based instruction set to
reduce processor state

Simple Multithreaded

Pipeline

• Have to carry thread select down pipeline to

ensure correct state bits read/written at each pipe

stage

Multithreading Costs

• Appears to software (including OS) as
multiple slower CPUs

• Each thread requires its own user state
– GPRs

– PC

• Other costs?

Thread Scheduling Policies

• Fixed interleave (CDC 6600 PPUs, 1965)
– each of N threads executes one instruction every N cycles

– if thread not ready to go in its slot, insert pipeline bubble

• Software-controlled interleave (TI ASC PPUs, 1971)
– OS allocates S pipeline slots amongst N threads

– hardware performs fixed interleave over S slots, executing
whichever thread is in that slot

• Hardware-controlled thread scheduling (HEP, 1982)
– hardware keeps track of which threads are ready to go

– picks next thread to execute based on hardware priority

scheme

What “Grain”

Multithreading?
• So far assumed fine-grained

multithreading

– CPU switches every cycle to a different thread

– When does this make sense?

• Coarse-grained multithreading

– CPU switches every few cycles to a different

thread

– When does this make sense?

Multithreading Design

Choices

• Context switch to another thread every cycle, or on
hazard or L1 miss or L2 miss or network request

• Per-thread state and context-switch overhead

• Interactions between threads in memory hierarchy

Denelcor HEP
(Burton Smith, 1982)

• First commercial machine to use

hardware threading in main CPU

– 120 threads per processor

– 10 MHz clock rate

– Up to 8 processors

– precursor to Tera MTA (Multithreaded

Architecture)

Tera MTA Overview

• Up to 256 processors

• Up to 128 active threads per processor

• Processors and memory modules
populate a 3D torus interconnection fabric

• Flat, shared main memory
– No data cache

– Sustains one main memory access per cycle
per processor

• 50W/processor @ 260MHz

MTA Instruction Format

• Three operations packed into 64-bit instruction word
(short VLIW)

• One memory operation, one arithmetic operation, plus
one arithmetic or branch operation

• Memory operations incur ~150 cycles of latency

• Explicit 3-bit “lookahead” field in instruction gives
number of subsequent instructions (0-7) that are
independent of this one
– c.f. Instruction grouping in VLIW

– allows fewer threads to fill machine pipeline

– used for variable- sized branch delay slots

• Thread creation and termination instructions

MTA Multithreading

• Each processor supports 128 active hardware
threads
– 128 SSWs, 1024 target registers, 4096 general-purpose

registers

• Every cycle, one instruction from one active
thread is launched into pipeline

• Instruction pipeline is 21 cycles long

• At best, a single thread can issue one instruction
every 21 cycles
– Clock rate is 260MHz, effective single thread issue rate

is 260/21 = 12.4MHz

Speculative, Out-of-Order

Superscalar Processor

P6 Performance: uops commit/clock

Average
0: 55%
1: 13%
2: 8%
3: 23%

Integer
0: 40%
1: 21%
2: 12%
3: 27%

0% 20% 40% 60% 80% 100%

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

0 uops commit

1 uop commits

2 uops commit

3 uops commit

Superscalar Machine Efficiency

• Why horizontal waste?

• Why vertical waste?

Vertical Multithreading

• Cycle-by-cycle interleaving of second
thread removes vertical waste

Ideal Multithreading for Superscalar

• Interleave multiple threads to
multiple issue slots with no
restrictions

Simultaneous

Multithreading
• Add multiple contexts and fetch engines

to wide out-of-order superscalar

processor

– [Tullsen, Eggers, Levy, UW, 1995]

• OOO instruction window already has most

of the circuitry required to schedule from

multiple threads

• Any single thread can utilize whole

machine

Comparison of Issue Capabilities
Courtesy of Susan Eggers

From Superscalar to SMT

• SMT is an out-of-order superscalar extended with

hardware to support multiple executing threads

From Superscalar to SMT

• Small items

– per-thread program counters

– per-thread return address stacks

– per-thread bookkeeping for instruction

retirement, trap & instruction dispatch

queue flush

– thread identifiers, e.g., with BTB & TLB

entries

Simultaneous Multithreaded

Processor

SMT Design Issues

• Which thread to fetch from next?

– Don’t want to clog instruction window
with thread with many stalls → try to
fetch from thread that has fewest insts
in window

• Locks

– Virtual CPU spinning on lock executes
many instructions but gets nowhere →
add ISA support to lower priority of
thread spinning on lock

Intel Pentium-4 Xeon Processor

• Hyperthreading == SMT

• Dual physical processors, each 2-way SMT

• Logical processors share nearly all resources of
the physical processor
– Caches, execution units, branch predictors

• Die area overhead of hyperthreading ~5 %

• When one logical processor is stalled, the other
can make progress
– No logical processor can use all entries in queues when

two threads are active

• A processor running only one active software
thread to run at the same speed with or without
hyperthreading

• “Death by 1000 cuts”

0% 10% 20% 30% 40% 50% 60%

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

1% to 60% instructions do not commit: 20% avg (30% integer)

And things to think about:

Wider in the front…
P6: (% instructions dispatched that do not commit)

