
Instruction Set Architectures:

History and Issues

Many slides taken from Dr. Srinivasan Parthasarathy. Some figures from our text.

Any errors are my own…

Schedule of things to do
• HW5 posted.

– Due on 4/23 (last day of class) @10pm – 24 hours late with only

5% off.

• MS3 meeting out later today.

• Project is due on Saturday 4/20 at 9pm.

– Last synth job can still be running, but don’t rely on it.

– No code changes after this.

• Oral and written reports are due on Tuesday 4/23.

– Brief directions for both posted shortly.

– Final written report is due at 9pm on Piazza

– Oral reports are during the day.

– Will watch at least 2 other talks.

• Can go to all if you wish.

Computer Architecture’s
Changing Definition

• 1950s to 1960s:

– Computer Architecture Course =

• Computer Arithmetic

• 1970s to 1980s:

– Computer Architecture Course =

• Instruction Set Design (especially ISA appropriate for compilers)

• 1990s+

– Computer Architecture Course =

• Design of CPU (microarchitecture)

• Design of memory system & I/O system

• Multiprocessor/multi-thread issues

Intro

Instruction Set Architecture:
The interface between hardware

and software
• Instruction set architecture is the structure of a

computer that a machine language programmer
must understand to write a correct (timing
independent) program for that machine.

• The instruction set architecture is also the machine
description that a hardware designer must
understand to design a correct implementation of
the computer.

Intro

Interface Design

A good interface:

• Lasts through many implementations (portability,
compatibility)

• Is used in many different ways (generality)

• Provides convenient functionality to higher levels

• Permits an efficient implementation at lower levels

Interface
imp 1

imp 2

imp 3

use

use

use

time

Intro

Today’s outline

• History of ISA design

• Overview of ISA options

– Classification into 0,1,2,3 address machines

– Addressing modes

– Other issues

• Sum-up.

Intro

Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers

(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

High-level Language Based Concept of a Family

(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(VAX, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(Mips,Sparc,HP-PA,IBM RS6000,PowerPC . . .1987)

“EPIC”? (IA-64. . .1999)

History

Evolution of Instruction Sets

• Major advances in computer architecture are
typically associated with landmark instruction set
designs

• Design decisions must take into account:

– technology

– machine organization

– programming languages

– compiler technology

– operating systems

• And they in turn influence these

History

Today’s outline

• History of ISA design

• Overview of ISA options

– Classification into 0,1,2,3 address machines

– Addressing modes

– Other issues

• Sum-up.

What Are the Components of an ISA?

• Sometimes known as The Programmer’s Model of the

machine

• Storage cells

– General and special purpose registers in the CPU

– Many general-purpose cells of same size in memory

– Storage associated with I/O devices

• The machine instruction set

– The instruction set is the entire repertoire of machine operations

– Makes use of storage cells, formats, and results of the

fetch/execute cycle

• e.g.., register transfers

Overview

• Which operation to perform add r0, r1, r3

– Ans: Op code: add, load, branch, etc.

• Where to find the operands: add r0, r1, r3

– In CPU registers, memory cells, I/O locations, or part

of instruction

• Place to store result add r0, r1, r3

– Again CPU register or memory cell

What Must an Instruction
Specify?(I)

Data Flow

Overview

• Location of next instruction add r0, r1, r3

br endloop

– Almost always memory cell pointed to by program

counter—PC

• Sometimes there is no operand, or no result, or

no next instruction.

– Can you think of examples?

What Must an Instruction
Specify?(II)

Overview

Instructions Can Be Divided into
3 Classes (I)

• Data movement instructions

– Move data from a memory location or register to another
memory location or register without changing its form

– Load—source is memory and destination is register

– Store—source is register and destination is memory

• Arithmetic and logic (ALU) instructions

– Change the form of one or more operands to produce a result
stored in another location

– Add, Sub, Shift, etc.

• Branch instructions (control flow instructions)

– Alter the normal flow of control from executing the next
instruction in sequence

– Br Loc, Brz Loc2,—unconditional or conditional branches

Overview

Classifying ISAs

Accumulator (before 1960):
1 address add A acc <- acc + mem[A]

Stack (1960s to 1970s):
0 address add tos <- tos + next

Memory-Memory (1970s to 1980s):
2 address add A, B mem[A] <- mem[A] + mem[B]
3 address add A, B, C mem[A] <- mem[B] + mem[C]

Register-Memory (1970s to present):
2 address add R1, A R1 <- R1 + mem[A]

load R1, A R1 <_ mem[A]

Register-Register (Load/Store) (1960s to present):
3 address add R1, R2, R3 R1 <- R2 + R3

load R1, R2 R1 <- mem[R2]
store R1, R2 mem[R1] <- R2

Overview: Classification

Classifying ISAs

Overview: Classification

Stack Architectures

• Instruction set:

add, sub, mult, div, . . .

push A, pop A

• Example: A*B - (A+C*B)

push A

push B

mul

push A

push C

push B

mul

add

sub

A B

A

A*B

A*B

A*B

A*B

A

A

C

A*B

A A*B

A C B B*C A+B*C result

Overview: Classification

Stacks: Pros and Cons

• Pros

– Good code density (implicit operand addressing→ top of
stack)

– Low hardware requirements

– Easy to write a simpler compiler for stack architectures

• Cons

– Stack becomes the bottleneck

– Little ability for parallelism or pipelining

– Data is not always at the top of stack when need, so
additional instructions like SWAP are needed

– Difficult to write an optimizing compiler for stack
architectures

– How about an OoO machine?

Overview: Classification

Accumulator Architectures

• Instruction set:
add A, sub A, mult A, div A, . . .

load A, store A

• Example: A*B - (A+C*B)
load B

mul C

add A

store D

load A

mul B

sub D

B B*C A+B*C AA+B*C A*B result

Overview: Classification

Accumulators: Pros and Cons

• Pros
– Very low hardware requirements

– Easy to design and understand

• Cons
– Accumulator becomes the bottleneck

– Little ability for parallelism or pipelining

– High memory traffic

– How about an OoO machine?

Overview: Classification

Memory-Memory Architectures

• Instruction set:
(3 operands) add A, B, C sub A, B, C mul A, B, C

• Example: A*B - (A+C*B)
– 3 operands

mul D, A, B

mul E, C, B

add E, A, E

sub E, D, E

Overview: Classification

Memory-Memory:
Pros and Cons

• Pros

– Requires fewer instructions (especially if 3 operands)

– Easy to write compilers for (especially if 3 operands)

• Cons

– Very high memory traffic (especially if 3 operands)

– Variable number of clocks per instruction (especially if 2
operands)

– With two operands, more data movements are required

– How about an OoO machine?

Overview: Classification

Register-Memory Architectures

• Instruction set:
add R1, A sub R1, A mul R1, B

load R1, A store R1, A

• Example: A*B - (A+C*B)
load R1, A

mul R1, B /* A*B */

store R1, D

load R2, C

mul R2, B /* C*B */

add R2, A /* A + CB */

sub R2, D /* AB - (A + C*B) */

Overview: Classification

Memory-Register:
Pros and Cons

• Pros

– Some data can be accessed without loading first

– Instruction format easy to encode

– Good code density

• Cons

– Operands are not equivalent (poor orthogonality)

– Variable number of clocks per instruction

– May limit number of registers

Overview: Classification

Load-Store Architectures

• Instruction set:
add R1, R2, R3 sub R1, R2, R3 mul R1, R2, R3

load R1, R4 store R1, R4

• Example: A*B - (A+C*B)
load R4, &A

load R5, &B

load R6, &C

mul R7, R6, R5 /* C*B */

add R8, R7, R4 /* A + C*B */

mul R9, R4, R5 /* A*B */

sub R10, R9, R8 /* A*B - (A+C*B) */

Overview: Classification

Load-Store:
Pros and Cons

• Pros

– Simple, fixed length instruction encoding

– Instructions take similar number of cycles

– Relatively easy to pipeline

• Cons

– Higher instruction count

– Not all instructions need three operands

– Dependent on good compiler

– Need to schedule registers well at the least.

Overview: Classification

Comparing Code Density

Stack

push A

push B

mul

push A

push C

push B

mul

add

sub

Accum.

load B

mul C

add A

store D

load A

mul B

sub D

Reg-Mem

load R1, A

mul R1, B

store R1, D

load R2, C

mul R2, B

add R2, A

sub R2, D

Load/Store

load R4, &A

load R5, &B

load R6, &C

mul R7, R6, R5

add R8, R7, R4

mul R9, R4, R5

sub R10, R9, R8

If we need 5 bits to specify a register, 16 bits to specify

a memory location and 8 bits to specify the opcode,

how many bits do we use for each scheme?

Overview: Classification

Types of Addressing Modes (VAX)

1.Register direct Ri

2.Immediate (literal) #n

3.Displacement M[Ri + #n]

4.Register indirect M[Ri]

5.Indexed M[Ri + Rj]

6.Direct (absolute) M[#n]

7.Memory Indirect M[M[Ri]]

8.Autoincrement M[Ri++]

9.Autodecrement M[Ri - -]

10. Scaled M[Ri + Rj*d + #n]

memory

reg. file

Overview: Addressing modes

Summary of Use of Addressing
Modes

Overview: Addressing modes

Distribution of Displacement
Values

Overview: Addressing modes

Branch Distances (in terms of
number of instructions)

Overview: Other issues

Registers vs. Memory

• Advantages of Registers

– Faster than cache (no addressing mode or tags)

– Deterministic (no misses)

– Can replicate (multiple read ports)

– Short identifier (typically 3 to 8 bits)

– Reduce memory traffic

• Disadvantages of Registers

– Need to save and restore on procedure calls and context
switch

– Can’t take the address of a register (for pointers)

– Fixed size (can’t store strings or structures efficiently)

– Generally limited in number

Overview: Other issues

How about something other
than registers and memory?

• We have two namespaces.

• Why not 3?

• What other name spaces might make sense?

•

Overview: Other issues

Alignment Issues
• If the architecture does not restrict memory accesses to be

aligned then
– Software is simple

– Hardware must detect misalignment and make 2+ memory accesses

– Expensive detection logic is required

– All references can be made slower

• Sometimes unrestricted alignment is required for backwards
compatibility

• If the architecture restricts memory accesses to be aligned then
– Software must guarantee alignment

– Hardware detects misalignment access and traps

– No extra time is spent when data is aligned

• Since we want to make the common case fast, having restricted
alignment is often a better choice, unless compatibility is an
issue

Overview: Other issues

Frequency of Immediate Operands

Overview: Other issues

80x86 Instruction Frequency
(SPECint92, Fig. 2.16)

Rank Instruction Frequency

1 load 22%

2 branch 20%

3 compare 16%

4 store 12%

5 add 8%

6 and 6%

7 sub 5%

8 register move 4%
9

9 call 1%

10 return 1%

Total 96%

Overview: Other issues

Today’s outline

• History of ISA design

• Overview of ISA options

– Classification into 0,1,2,3 address machines

– Addressing modes

– Other issues

• Sum-up.

Encoding an Instruction Set

• What are the metrics of goodness?

– TProgram is always the main measure.

– But what goes into that?

• Number of instructions

• Time it takes to execute each instruction

– Complexity of instruction

» Decode

» Execute

– Size if code total (yes, that double counts number of

instructions to some extent)

– Impact on parallelization

Sum-up

Encoding an Instruction Set

• Some impacts are pretty obvious

– If you need fewer bits for a given program, you

can expect a higher Icache hit rate.

– If instructions aren’t regular (which field

selects the input registers, variable instruction

word lenght) you can expect a longer decode

time.

• Some aren’t

– Discuss how the ISA might make a superscalar

out-of-order processor difficult to build.

Sum-up

Encoding an Instruction Set

• Consider a load/store machine that uses

immediates

– 5 bits for registers, 16 bits for immediates.

• What percent of a 32-bit ISA encoding does a 3 register

argument instruction use?

• An instruction using two registers and an immediate?

– What would be the downside to using a 12-bit

immediate? The upside?

Sum-up

Encoding an Instruction Set

• A desire to have as many registers and
addressing modes as possible

• The impact of size of register and
addressing mode fields on the average
instruction size and hence on the average
program size

• A desire to have instruction encode into
lengths that will be easy to handle in the
implementation

Sum-up

