
Instruction scheduling

Based on slides by Ilhyun Kim and Mikko Lipasti

Schedule of things to do
• HW5 posted.

– Due on 4/23 (last day of class) @10pm – 24 hours late with only
5% off.

• MS3 Today

• Project is due on Saturday 4/20 at 9pm.
– Last synth job can still be running, but don’t rely on it.

– No code changes after this.

• Oral and written reports are due on Tuesday 4/23.
– Brief directions for both posted shortly.

– Final written report is due at 9pm on Piazza

– Oral reports are during the day.

– Will watch at least 2 other talks.

• Can go to all if you wish.

Lecture (and review) schedule

• 4/11: (today) Instruction scheduling

• 4/16: (Tuesday) No class (work on projects)

• 4/18: (Thursday) Exam Q&A in class

• 4/23: (Tuesday) Project presentations

• 4/24: (Wednesday) Exam Q&A (what time?)

• 4/26: (Friday) Final exam 10:30-12:30

Today

• Instruction scheduling overview
– Scheduling atomicity

– Speculative scheduling

– Scheduling recovery

• Other neat ideas…

• Reading list

Register Dataflow

Scheduling review

Instruction scheduling

• A process of mapping a series of instructions into
execution resources

– Decides when and where an instruction is executed

◼ Data dependence graph

1

2 3 4

5 6

FU0 FU1

n

n+1

n+2

n+3

1

2 3

5 4

6

◼ Mapped to two FUs

Instruction scheduling review

Instruction scheduling

• A set of wakeup and select operations
– Wakeup

• Broadcasts the tags of parent instructions selected

• Dependent instruction gets matching tags, determines if source
operands are ready

• Resolves true data dependences

– Select
• Picks instructions to issue among a pool of ready instructions

• Resolves resource conflicts
– Issue bandwidth

– Limited number of functional units / memory ports

Instruction scheduling review

Scheduling loop

• Basic wakeup and select operations

==
== OROR

readyL tagL readyRtagR

==
== OROR

readyL tagL readyRtagR

tag W tag 1

…

… …

ready - request
request n

grant n

grant 0

request 0

grant 1

request 1

……

selected

issue

to FU

broadcast the tag of the

selected instructions

Select logic Wakeup logic

scheduling

loop

Instruction scheduling review

Wakeup and Select

FU0 FU1

n

n+1

n+2

n+3

1

2 3

5 4

6

Select 1

Wakeup 2,3,4

Wakeup / select

Select 2, 3

Wakeup 5, 6

Select 4, 5

Wakeup 6

Select 6

Ready inst

to issue

1

2, 3, 4

4, 5

6

1

2 3 4

5 6

Instruction scheduling review

Scheduling Atomicity

• If we want to pipeline selection logic, we will latch the
selection decision (it becomes a pipeline stage)
– So we can’t wake up the next guy until the cycle after we are selected.

n

n+1

n+2

n+3

n+4

select 1

wakeup 2, 3

select 2, 3

wakeup 4

select 4

select 1

wakeup 2, 3

Select 2, 3
wakeup 4

Select 4

Atomic scheduling Non-Atomic

2-cycle scheduling
cycle

1

4

1

2 3

4

2 3

Scheduling Atomicity

Implication of scheduling atomicity

• Pipelining is a standard way to improve clock
frequency

• Hard to pipeline instruction scheduling logic without
losing ILP
– ~10% IPC loss in 2-cycle scheduling

– ~19% IPC loss in 3-cycle scheduling

• A major obstacle to building high-frequency
microprocessors

Scheduling Atomicity

Scheduler Designs

• Data-Capture Scheduler

– Keep the most recent
register value in reservation
stations

– Data forwarding and
wakeup are combined to
some extent

• Early tag broadcast
decouples this to some
extent of course.

Register

File

Data-captured

scheduling window

(reservation station)

Functional Units

F
o
rw

a
rd

in
g

a
n
d
 w

a
k
e
u
p R

e
g
is

te
r

u
p
d
a
te

Scheduling Atomicity

Scheduler Designs

• Non-Data-Capture
Scheduler
– Keep the most recent

register value in RF
(physical registers)

– Data forwarding and
wakeup are cleanly
decoupled

Register

File

Non-data-capture

scheduling

window

Functional Units

U
p

d
a

te

&

F
o

rw
a

rd
in

g

w
a
k
e
u
p

Scheduling Atomicity

Mapping to pipeline stages
• AMD K7 (data-capture)

◼ Pentium 4 (non-data-capture)

Data

Data

Data /

wakeup

wakeup

Scheduling Atomicity

Scheduling atomicity
& non-data-capture scheduler

Fetch Decode
Sched
/Exe

Writeback Commit

Atomic Sched/Exe

Fetch Decode Schedule Dispatch RF Exe Writeback Commit

wakeup/
select

Fetch Decode Schedule Dispatch RF Exe Writeback CommitFetch Decode Schedule Dispatch RF Exe Writeback CommitFetch Decode Schedule Dispatch RF Exe Writeback CommitFetch Decode Schedule Dispatch RF Exe Writeback CommitFetch Decode Schedule Dispatch RF Exe Writeback Commit

Wakeup
/Select

Fetch Decode Schedule Dispatch RF Exe Writeback Commit

Wakeup
/Select

• Multi-cycle scheduling loop

• Scheduling atomicity is not maintained
– Separated by extra pipeline stages (Disp, RF)
– Unable to issue dependent instructions consecutively

➔ solution: speculative scheduling

Scheduling Atomicity

Speculative Scheduling
• Speculatively wakeup dependent instructions even before the parent

instruction starts execution
– Keep the scheduling loop within a single clock cycle

• But, nobody knows what will happen in the future

• Source of uncertainty in instruction scheduling: loads
– Cache hit / miss
– Store-to-load aliasing
➔ eventually affects timing decisions

• Scheduler assumes that all types of instructions have pre-determined
fixed latencies
– Load instructions are assumed to have a common case (over 90% in general)

$DL1 hit latency
– If incorrect, subsequent (dependent) instructions are replayed

Speculative Scheduling

Speculative Scheduling
• Overview

Spec wakeup
/select

Fetch Decode Schedule Dispatch RF Exe
Writeback
/Recover

Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Fetch Decode Schedule Dispatch RF Exe
Writeback
/Recover

Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Spec wakeup
/select

Fetch Decode Schedule Dispatch RF Exe
Writeback
/Recover

Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Fetch Decode Schedule Dispatch RF Exe
Writeback
/Recover

Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Fetch Decode Schedule Dispatch RF Exe
Writeback
/Recover

Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Fetch Decode Schedule Dispatch RF Exe
Writeback
/Recover

Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Fetch Decode Schedule Dispatch RF Exe
Writeback
/Recover

Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Latency Changed!!

Fetch Decode Schedule Dispatch RF Exe
Writeback
/Recover

Commit

Re-schedule
when latency mispredicted

Invalid input value

Speculatively issued instructions

Fetch Decode Schedule Dispatch RF Exe
Writeback
/Recover

Commit

Speculatively issued instructions

◼ Unlike the original Tomasulo’s algorithm

◼ Instructions are scheduled BEFORE actual execution occurs

◼ Assumes instructions have pre-determined fixed latencies

◼ ALU operations: fixed latency

◼ Load operations: assumes $DL1 latency (common case)

Speculative Scheduling

Scheduling replay
• Speculation needs verification / recovery

– There’s no free lunch

• If the actual load latency is longer (i.e. cache miss) than what
was speculated
– Best solution (disregarding complexity): replay data-dependent

instructions issued under load shadow

verification flow

Fetch Decode Rename Queue Sched
Disp Disp RF RF Exe Retire

/ WB
CommitRename

instruction flow

Cache miss
detected

Speculative Scheduling—recovery

Wavefront propagation

• Speculative execution wavefront
– speculative image of execution (from scheduler’s perspective)

• Both wavefront propagates along dependence edges at the same rate (1 level /
cycle)

– the real wavefront runs behind the speculative wavefront

• The load resolution loop delay complicates the recovery process
– scheduling miss is notified a couple of clock cycles later after issue

verification flow

Fetch Decode Rename Queue Sched
Disp Disp RF RF Exe Retire

/ WB
CommitRename

speculative execution
wavefront

real execution
wavefront

instruction flow

dependence
linking

Data
linking

Speculative Scheduling—recovery

Issues in scheduling replay

• Cannot stop speculative wavefront propagation
– Both wavefronts propagate at the same rate

– Dependent instructions are unnecessarily issued under load misses

checker

Sched
/ Issue

Exe

cache miss
signalcycle n

cycle n+1

cycle n+2

cycle n+3

Speculative Scheduling—recovery

Requirements of scheduling replay

• Conditions for ideal scheduling replay

– All mis-scheduled dependent instructions are invalidated instantly

– Independent instructions are unaffected

• Multiple levels of dependence tracking are needed

– e.g. Am I dependent on the current cache miss?

– Longer load resolution loop delay → tracking more levels

◼ Propagation of recovery status should be faster than

speculative wavefront propagation

◼ Recovery should be performed on the transitive closure

of dependent instructions

load

miss

Scheduling replay schemes

• Alpha 21264: Non-selective replay
– Replays all dependent and independent instructions issued under load

shadow

– Analogous to squashing recovery in branch misprediction

– Simple but high performance penalty

• Independent instructions are unnecessarily replayed
Sched Disp RF Exe Retire

Invalidate & replay ALL
instructions in the load

shadow

LD

ADD

OR

AND

BR

LD

ADD

OR

AND

BR

LD

ADD

OR

AND

BR

miss
resolvedLD

ADD

OR

AND

BR

LD

ADD

OR

Cache
miss

AND

BR

Speculative Scheduling—recovery

Position-based selective replay

• Ideal selective recovery
– replay dependent instructions only

• Dependence tracking is managed in a matrix form
– Column: load issue slot, row: pipeline stages

merge
matices

ADD

0 0
0 0
0 0
0 1

OR

0 0
0 0
0 0
0 1

SLL

0 0
0 0
0 0
0 1

AND

0 0
0 0
1 0
0 1

XOR

0 0
0 0
1 0
0 0

LD

LD

ADD

OR XOR

ANDSLL

Integer
pipeline

Mem pipeline
(width 2)

Sched

Disp

RF

Exe

Retire

ADD

0 0
0 0
0 1
0 0

OR

0 0
0 0
0 1
0 0

XOR

0 0
1 0
0 0
0 0

LD

LD

OR

ANDSLL

ADD

XOR

SLL

0 0
0 0
0 1
0 0

AND

0 0
1 0
0 1
0 0

tag / dep info
broadcast

kill bus broadcast

killed killed killed killed

Cycle
n

Cycle
n+1

Sched

Disp

RF

Exe

Retire

1 0
0 1
0 0
1 0

b
it
 m

e
rg

e
&

 s
h
if
t

in
v
a
lid

a
te

 i
f
b
it
s

m
a
tc

h
in

 t
h
e
 l
a
st

 r
o
w

tagR

ReadyR

ReadyL

tagL =

=

K
il

l
b

u
s

ta
g

 b
u

s

d
e

p
e

n
d

e
n

c
e

 i
n

fo
 b

u
s

Cache miss
Detected

Speculative Scheduling—recovery

We could also do
something more radical

• Greatly simplify scheduling in some way.

24

Misc. “Neat ideas”

Another scheduling idea:
Grandparents

• Schedule based on grandparents

J. Stark, M.D. Brown, and Y.N. Patt. “On pipelining dynamic instruction scheduling logic,” ISCA 2000

Misc. “Neat ideas”

Low-complexity scheduling techniques

• FIFO (Palacharla, Jouppi, Smith, 1996)

– Replaces conventional scheduling logic with multiple FIFOs
• Steering logic puts instructions into different FIFOs considering

dependences

• A FIFO contains a chain of dependent instructions

• Only the head instructions are considered for issue

Misc. “Neat ideas”

FIFO (cont’d)
• Scheduling example

Misc. “Neat ideas”

FIFO (cont’d)
• Performance

• Comparable performance to the conventional scheduling

• Reduced scheduling logic complexity

• Many related papers on clustered microarchitecture

• Can in-order clusters provide high performance?

Misc. “Neat ideas”

Key Challenge:
MLP (Memory-Level Parallelism)

• Tolerate/overlap memory latency

– Once first miss is encountered, find another one

• Naïve solution

– Implement a very large ROB, LSQ

– Power/area/delay make this infeasible

• Build virtual instruction window

– How to do this?

Misc. “Neat ideas”

Check point
• Key notion is we need to be able to recover

when we get a mis-speculation (or exception
or other nuke situation)

– How about just storing a check point every X
instructions (say 100).

• If there is a nuke, back up to check point and move
forward with either

– Knowledge of issue (predict correctly this time) OR

– Carefully (in-order?).

• Don’t let stores write to memory until get to next check
point.

Misc. “Neat ideas”

Sources and Further Reading
• I. Kim and M. Lipasti, “Understanding Scheduling Replay Schemes,” in Proceedings

of the 10th International Symposium on High-performance Computer Architecture
(HPCA-10), February 2004.

• Srikanth Srinivasan, Ravi Rajwar, Haitham Akkary, Amit Gandhi, and Mike Upton,
“Continual Flow Pipelines”, in Proceedings of ASPLOS 2004, October 2004.

• Ahmed S. Al-Zawawi, Vimal K. Reddy, Eric Rotenberg, Haitham H. Akkary,
“Transparent Control Independence,” in Proceedings of ISCA-34, 2007.

• T. Shaw, M. Martin, A. Roth, “NoSQ: Store-Load Communication without a Store
Queue, ” in Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture, 2006.

• Andrew Hilton, Santosh Nagarakatte, Amir Roth, "iCFP: Tolerating All-Level Cache
Misses in In-Order Processors," Proceedings of HPCA 2009.

• J. Stark, M.D. Brown, and Y.N. Patt. “On pipelining dynamic instruction
scheduling logic,” ISCA 2000

