
 1/9

EECS 470 Midterm Exam Answers
Fall 2006

Name: _________KEY___________________________ unique name: _______________

Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so.

Scores:

Points
Page 2 /18
Page 3 /13
Page 4 /15
Page 5 /10
Page 6 /12
Page 7 /10
Page 8-9 /22
Total /100

NOTES:

• Open book and Open notes
• Calculators are allowed, but no PDAs, Portables, Cell phones, etc.
• Don’t spend too much time on any one problem.
• You have about 120 minutes for the exam.
• There are 9 pages including this one.
• A few questions have limits on the number or words you can use. We will only grade

your answer until you hit that limit.
• Be sure to show work and explain what you’ve done when asked to do so.
• The last page has two “answer areas” for the Part III question. Clearly mark which

one you want graded or we will grade the first one.

 2/9

Part 1 – Short answer – 46 points

1. Fill-in-the-blank or circle the best answer [18 points, -2 per wrong/blank, minimum 0]

a. When using the algorithm we’ve named Tomasulo’s 3, if you have N reorder-

buffer entries, M reservation stations and K architected registers you can be sure

that you will not have a use for more than N+K or N+M or M+K physical registers.

b. Given a 16-KB two-way associative cache with 32-byte cache lines and a 64-bit

address space there will be __8__ bits used for the index. If that same cache were

fully-associative you’d need __0___ bits to be used for the index.

c. A cylindrical metal wire which is 1m long and as a diameter of 10nm will have

the higher or lower or the same resistance as a wire made of the same material

which is 2m long and has a diameter of 20nm.

d. Adding more reservation stations will reduce the amount of time that the

processor stalls due to structural hazards or data hazards or control hazards but

may decrease the number of branch delay slots or clock period or clock

frequency.

e. In Tomasulo’s 2 an instruction might find its data in one of three places. Those

three places are ___ROB________, ____CDB____, or _______ARF____. In

T3 there are two or three or four places an instruction might find its data.

f. In the paper “Combining Branch Predictors” the Gshare predictor involved

__XORing__ the global history with the __selected bits of the PC of the branch__

If those two things were instead concatenated the predictor is called a

“_gselect________ predictor” in the paper.

 3/9

2. Consider the pipelined processor you did as part of project 3. Say 20% of all instructions

were loads, 25% were branches, and 20% were stores and that the program was quite long
(millions and millions of instructions). 20% of all instructions are data dependent on the
instruction in front of them, and branches are taken 75% of the time. What would you expect
the CPI to be? Show your work. [5]

for 100 instructions we get:

4 Data hazard stalls: 20 (#loads)*.2(% dep)*1(stall cycles)
56.25 Control hazard stalls: 25 (# branches)*.75 (%taken)*3(# squashed)
40 #stalls due to structural hazard
====
100.25.

(100+100.25)/100=2.0025

3. In T3 if you have 32 architected registers, 64 physical registers, 8 RS and 32 RoB entries,

how many bits of memory will you need to store the rename table? Clearly show your work.
[4]

32 entries each log2(64) bits = 32*6=192 bits.

4. Write a short program for a stack machine which computes (A+B)*(C+D). [4]

Push A
Push B
Add
Push C
Push D
Add
Mult

 4/9

5. Consider a branch predictor which uses a branch history table (BHT) and a pattern history

table (PHT). Say we use 10 bits of the PC to select the BHT entry, our histories cover the
last 8 branches and we use a 2-bit predictor. How many bits of storage will be required for
the BHT? The PHT? Clearly show your work. [4]

BHT has 210 entries, each with 8 bits. 8192 bits
PHT has 28 entries each 2 bits wide. 512 bits.

6. Provide a taken/not-taken pattern consisting of exactly 4 branches where a two-bit saturating

up-down predictor will do better than the predictor found on page 198 of the book. Assume
both are initially strongly not-taken. Your answer should be of the form (T, NT, T, T).[5]

T,T,NT,NT

7. Answer each of the following questions in 40 words or less.

a. Why don’t we let stores write to memory as soon as their address is known? [3]
This question was thrown out for being poorly worded.
The answer we wanted was that stores shouldn’t write their data until they
are non-speculative.

b. In the algorithm we call T2, when does a committing instruction update the RAT?
Be precise. [3]
When the committing instruction’s RoB entry is being pointed to by the
RAT.

 5/9

Part II – Longer Answer – 54 points

1. Write a Verilog module named FSA which implements the following state machine. You are
to follow the Verilog style guidelines we’ve provided you for your assignments. You are to
implement a synchronous reset which causes the state machine to reset to the state on the left.
[10]

No answer provided.

 6/9

2. Consider a set of code where there are three classes of instructions.
• Independent instructions are not dependent on any other instruction and can execute in 3

cycles.
• Dependent instructions are dependent on the instruction in front of them and take 3

cycles to execute.
• Branch instructions are not dependent on any other instruction and take one cycle to

execute. However, they are always mispredictions.

Say you have a machine which can issue one instruction per cycle, finish execution of one
instruction per cycle, and retire one instruction per cycle. Branch mis-predictions are
resolved when the branch hits the head of the RoB and nothing is done about mis-predicted
branches before that. This machine implements what we have called “Tomasulo’s 3”, has a
RS size of 16 and a RoB size of 64. Show your work!

a. What is the best CPI this machine could achieve if the program being run consisted of

groups of 10 instructions, where the first 9 were “independent” and the last was
“branch”. Assume there are a large number of these groups. (So the code is 9
independent, 1 branch, 9 independent, 1 branch, etc.) [4]
Note: There are a number of assumptions one could make which would change this
answer…
The first independent instruction takes 3 cycles to finish (perhaps up to 2 more
cycles due to fetch and commit times). Each one after that takes 1 cycle,
including the branch. After the branch you restart. So 12 cycles/10 instructions
=CPI of 1.2

b. What is the best CPI this machine could achieve if the program being run consisted of
groups of 10 instructions, where the first 9 were “dependent” and the last was
“branch”. Assume there are a large number of these groups. (So the code is 9
dependent, 1 branch, 9 dependent, 1 branch, etc.) [4]
Again, note that there are a number of assumptions that could be made. If you made
different assumptions than you did for part a) we took off points.
This time each dependent instruction takes 3 cycles and the branch 1. The first
dep instruction may add a cycle for fetching and/or the commit time of the
branch. But without that you have 27 (dep instructions) +1 (branch) or 28/10 or
2.8.

c. What is the best CPI this machine could achieve if the program being run consisted
of groups of 100 instructions, where the first 99 were “dependent” and the last was
“independent”. Assume there are a large number of these groups. (So the code is 99
dependent, 1 independent, 99 dependent, 1 independent, etc.) [4]
Each group of 100 will be able to start as the group in front of it finishes. That
“head start” will last from when an RS opens up for the independent instruction
and will last until that ind. instruction hits the head of the RoB. So you are
looking at 45 cycles of overlap in execution. So 300 cycles-45-255/100 is 2.55

 7/9

3. Consider a Tournament predictor made up of the following components:
• Local

– 8-entry 3-bit local history table indexed by PC
– 8-entry 2-bit up/down counter indexed by local history

• Global
– 8-entry 2-bit up/down counter indexed by global history

• Tournament
– 8-entry 2-bit up/down counter indexed by PC

Now consider the following program:

Bob: R1=R2+R3
 if(R1==0) goto Next
 R3=R4+R5
Next: if(R6==R3) goto Done
 goto Bob
Done: ………

Assume:
• The global history starts at 000.
• All histories have the right-most bit be the most recent branch.
• The first branch is taken every other time, and is taken the first time.
• The second branch is not taken the first time and taken after that.
• The always taken branch is predicted and updates the predictor.
• “Bob” is located at 0x100 and every instruction takes up 4 bytes.

Show the table’s status once the “Done” label is reached. [10]

Branch
Index

T/NT Global PT GPT BHT PHT TS

1 1 000 001 11 11 101 011 11 11 01 01
3 0 001 010 10 01 110 100 11 10 10 10
4 1 010 101 00 01 110 101 10 11 11 10
1 0 101 010 11 10 011 110 00 00 01 01
3 1 010 101 01 10 100 001 01 10 10 10

10 7

11 6

00 5

11 10 4

10 3

00 2

01 1

00 0

Pred.
state

ADR[27:29]

Tournament selector
00=local, 11=global

1017

1116

0015

110 1014

110 0013

1002

101 1101

0010

History ADR[27:29]

Local predictor 1st level
table (BHT)
0=NT, 1=T

117

116

01 105

01 104

003

102

111

000

Pred. state history

Local predictor 2nd
level table (PHT)
00=NT, 11=T

00 7

11 6

11 10 5

00 4

00 3

00 10 2

10 01 1

11 0

Pred. state history

Global predictor table
00=NT, 11=T

 8/9

4. Consider the following state of a machine implementing what we’ve called Tomasulo’s third

algorithm.
RAT ROB

Arch
Reg #

Phy.
Reg #

 Buffer
Number

PC Executed? Dest
ARN

Dest.
PRN

Replaced
Phy. Reg#
(Back pointer)

0 9 0 0 12 Y 0 5 0
1 1 1 16 N 4 6 4
2 2 4 2 20 N 4 7 6
3 3 3 24 Y -- -- --
4 7 4 80 Y 0 8 5
 5 84 N 0 9 8
 6 28 N 2 4 2
 7 32 N 0 0 5
 8

RS PRF
RS# Op

Type
Op1
Ready?

Op1
PRN/value

Op2
Ready?

Op2
PRN/value

Dest
PRN

ROB Phy
Reg

Value Free Valid

0 Add Y 9 Y 17 6 1 0 7 N Y N
1 Add N 7 N 7 9 5 1 8 N Y
2 Add N 6 Y 9 7 2 2 9 N Y
3 Add Y 17 Y 35 4 6 3 10 N Y
4 Add N 0 Y 10 0 7 4 1 N Y N
 5 17 N Y
 6 66 N Y N
 7 35 N N Y
 8 11 N Y Y N
 9 70 N Y N
 10 44 Y N
 11 55 Y N
 12 99 Y N

Say that the instruction in ROB #3 is a branch and it was mis-predicted: the next PC should have
been 28. Say that the instruction in memory location 28 is R2=R0+R4 and in 32 is R0=R2+R3.
Update the machine to the state where the branch has left the RoB, and the instructions at
memory locations 28 and 32 have issued but not executed. When faced with an arbitrary
decision, just be sure to make a legal choice. [18]

On the following page is an extra copy of this state. You may use this one or the one on the next
page but be sure to cross out (with a BIG X) the one you don’t want graded. Also, be sure to
answer the following question.

1. What was the instruction that is found at memory location 84? [4]
 R0=R4+R4

KEY:
• Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes;

otherwise it is the Physical Register Number that is being waited upon.
• Op2 PRN/value is the same as above but for the second argument.
• Dest. PRN is the destination Physical Register Number.
• Dest. ARN is the destination Architectural Register Number.
• ROB is the associated ROB entry for this instruction.
• Free/Valid indicates if the PRF entry is currently available for allocation

and if the valid in it is valid

Head=0 6
Tail=5 7

 9/9

RAT ROB

Arch
Reg #

Phy.
Reg #

 Buffer
Number

PC Executed? Dest
ARN

Dest.
PRN

Replaced
Phy. Reg#
(Back pointer)

0 9 0 12 Y 0 5 0
1 1 1 16 N 4 6 4
2 2 2 20 N 4 7 6
3 3 3 24 Y -- -- --
4 7 4 80 Y 0 8 5
 5 84 N 0 9 8
 6
 7
 8

RS PRF
RS# Op

Type
Op1
Ready?

Op1
PRN/value

Op2
Ready?

Op2
PRN/value

Dest
PRN

ROB Phy
Reg

Value Free Valid

0 Add Y 9 Y 17 6 1 0 7 N Y
1 Add N 7 N 7 9 5 1 8 N Y
2 Add N 6 Y 9 7 2 2 9 N Y
3 3 10 N Y
4 4 1 N Y
 5 17 N Y
 6 66 N N
 7 88 N N
 8 11 N Y
 9 16 N N
 10 44 Y N
 11 55 Y N
 12 99 Y N

KEY:
• Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes;

otherwise it is the Physical Register Number that is being waited upon.
• Op2 PRN/value is the same as above but for the second argument.
• Dest. PRN is the destination Physical Register Number.
• Dest. ARN is the destination Architectural Register Number.
• ROB is the associated ROB entry for this instruction.
• Free/Valid indicates if the PRF entry is currently available for allocation

and if the valid in it is valid

Head=0
Tail=5

