
Page 1 of 9

EECS 470 Midterm Exam

Fall 2021

Name: ____________________________________ unique name: _______________

 Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so.

NOTES:

• Open book and Open notes

• Calculators are allowed, but no PDAs, Portables, Cell phones, etc.

• Don’t spend too much time on any one problem.

• You have about 120 minutes for the exam.

• There are 10 pages including this one.

• Common assumption:
o Memory has 32-bits of address and is byte addressable.

• Be sure to show work and explain what you’ve done when asked to do so.

• The last page has two “answer areas”. Clearly mark which one you want graded or we will grade the
first one.

Page 2 of 9

1. Fill-in-the-blank or circle the best answer [12 points, -2 per wrong/blank, minimum 0]

a. Given an 8MB, two-way associative cache with 32-byte lines, you will need __17__ bits to
index the cache.

b. Say a wire that was 1mm in length, 20nm wide and 15nm high was replaced by a wire that
as 4mm long, 40nm wide and had the same height. You would expect the resistance to
go up by 8x / go up by 2x / stay constant / go down by 2x / go down by 8x.

c. The wakeup process can be best described as addressing true dependencies /
false dependencies / control hazards / structural hazards.
The select process can best be described as addressing true dependencies /
false dependencies / control hazards / structural hazards.

d. As you decrease the size of the RoB, you expect the IPC of the processor on a given workload to go
up / down, while you expect the clock period to go up / down or stay the same.

e. The clock period of a 20 MHz clock is ___0.05______ microseconds.

f. In the computer that first used Tamasulo’s algorithm, the primary source of high-latency instructions

was load / store / floating point / branch instructions. In modern computers it is instead load /
store / floating point / branch instructions that are the primary long-latency instructions.

2. You’re benchmarking a program that has a parallel component and a serial component. When using 2 cores,

the parallel component takes up 80% of execution time and the serial component takes up the other 20%.

The parallel and serial components never run at the same time. The parallel component's performance

scales linearly with more cores.

a. What would you expect the speedup to be if you forced the program to run with a single core?

Show your work. [4]

 .08x2+.2=1.8 as much time. Speedup =1/1.8 ~=0.56 or 56%

b. What is the theoretical maximum possible speedup (compared to 1 core) you can achieve by simply

adding more cores to your system? Show your work, clearly highlighting any number used from part

a (so we can better manage partial credit). [4]

1 core is .2/1.8 serial and 1.6/1.8 parallel. So best speed is .2/1.8 with infinite number of cores.

Speedup is 1.8/.2 =9 or 900%

Page 3 of 9

3. Consider the R10K scheme and its structures as taught in class. Indicate what values are read or written by
an instruction at a given point during its time in the out-of-order core. You are not responsible for the
crossed out cells (though things may be happening there). Clearly indicate if nothing happens in a given
situation. We’ve done one entry for you as an example. Assume the RS is freed at issue. [12 points]

 RAT RS ROB
Dispatch Read:

 The 2 source registers.

Write:
 The location indexed by the
destination AR is written with
the PRF number allocated for
this instruction.

Read:
* Nothing.
* Also accept something
involving figuring out which RS
to use.

write:
* to the allocated RS all
relevant values. Detailing them
is fine but not needed.

Execution
complete

Nothing Read:
* Each RS compares to the
CDB’s tag.

Write:
* If that CDB matches the RS’s
tag, the value field is written.
* Can mention the data valid
bit.

Nothing.

Commit Read:
* Nothing.

Write:
* If committing a mispredict,
copy RRAT into RAT.
* May mention freelist, though
it probably isn’t kept here.

 Read:
* Need the ARF number to
index the RRAT.
* Read the head to update it
(we didn’t require you
mentioned this here).

Write:
* Update the head of ROB.
* Maybe clear the elements in
the ROB (not needed, not
wrong).

Page 4 of 9

4. Short answer [12 points]

a. Consider the pipeline you were to implement for your third assignment, but assume that the
structural hazard has been removed. A given program consists of 15% loads, 10% stores, 20%
branches and the rest are ALU operations. If 40% of the branches are taken and 20% of all loads are
followed by an instruction dependent on them, what is the expected CPI of the processor on this
program? Show your work [4]

CPI=1+.2*.4*3+.15*.2*1=1.27

b. One idea presented in McFarling’s “Combining Branch Predictors is a “bimodal/gshare” predictor.

Briefly define what this predictor is. You may assume “gshare” and “bimodal” are terms you don’t
need to redefine. [4]

This is essentially a tournament predictor where the gshare and bimodal predictors are the
two options and a third predictor picks which one to use.

c. Consider a 32-entry, direct-mapped BTB which stores 10 bits of tag and 16 bits of “data”. Which bits
will be used as the index? Which bits will be used as the tag? Assume you have 32-bit addresses
with the most significant bit being 31 and the least significant bit being 0. [4]

Bits 6-2 of the address will be used as the index. Bits 16-7 will be used as the tag.

Page 5 of 9

5. The ISA used by your employer, QuickCPU Inc., lacks predicated instructions. You’ve been asked to consider
adding predication to the ADD and ADDI instruction. The QuickCPU ISA has 32-bit instructions, uses 32
general purpose registers (GPRs) and uses 12-bit signed immediate values. The ADD instruction currently
uses 3 register arguments (two source, one destination) while the ADDI instruction uses 2 register
arguments and one immediate argument. [10 points]

a. What fraction of the total ISA encodings possible are used by these two instructions? Briefly show
your work. [4]

ADD: 2^(32-15)/2^32=2^-17
ADDI: 2^(32-22)/2^32=2^-10

b. If we had all of the ADD and ADDI instructions predicated by a single register (say r25) how would

the above answers change? That is, there would be no non-predicated version of the instructions.
[3]

Because we would always use the same register, there is no need to encode anything
additional. So, the answer is the same as a.

c. Same as part b, but we now can use any of the GPRs as a predicate. [3]

Now each instruction uses an extra 5 bits. So, we end up at 2^-12 for ADD and 2^-5 for ADDI.

Page 6 of 9

6. Consider the following RISC-V code. The hex numbers on the left are the address of the line in question.

 li r2, 1 // r2 = 1

 li r3, 0 // r3 = 0

 li r4, 9 // r4 = 9

0x100 loopi: addi r2, 1 // r2 = r2 + 1

 ... // set r5 =(r2 mod 4)

0x2c4 bne r5, r0, addr3 // Branch 1

 addi r4, 1

 addr3: addi r5, 1

 ... // set r6 to 1 if (r2 < 12); else to 0

0x4b8 bne r6, r0, loopi // Branch 2

 wfi

What are the exact mispredicton rates for the following predictors? Predictors are initialized to
not-taken or strongly not-taken as appropriate. You must show your work to get credit! [12 points]

a. A bimodal predictor with 4 entries each with a 2-bit saturating counter. [5]

Branch patterns are: Branch 1: TTNTTTNTTTN

 Branch 2: TTTTTTTTTTN

b. A local history predictor with a 4-entry BHT followed by an 8-entry PHT where each entry in the
PHT is 1 bit. [7]

Branch 1 will get the first two wrong due to warmup. (NNN, NNT). It will get the 3rd
correct due to warmup. The 4th is TTN which is still initialized to N, 5 is wrong as TNT->N
due to warmup. After that it will miss the Ns due to TTT being T due to B2. So 1, 2, 4, 5,
7, and 11 will be wrong.

Branch 2 will get 1 and 2 correct due to having the cases set by B1. 3 will be wrong
because NTT was set to N by B1. 4 will be wrong due to warmup. 7 will be wrong due
to aliasing with B2. 11 will be right. So wrong on 3, 4, and 7.

B1 T T N T T T N T T T N

Pred 00 01 10 01 10 11 11 10 11 11 11

B2 T T T T T T T T T T N

Pred 00 01 10 11 11 11 11 11 11 11 11

Misprediction rate

Branch 1: 6/11 Branch 2: 3/11

Misprediction rate

Branch 1: 6/11 Branch 2: 3/11

Page 7 of 9

7. You have been tasked with implementing a SystemVerilog module named expiry_reg that was started,
but not completed, by a coworker. It is part of a larger design of a countdown FIFO called expiry_fifo.
This is a FIFO (First In First Out) data structure where data will be invalidated after existing in the queue for a
fixed number of clock cycles. The Countdown FIFO has a maximum size of pCAPACITY, but if elements are
pushed when it is full, the oldest element will be lost forever.

The expiry_fifo is built by connecting multiple instances of expiry_reg. expiry_reg is a shift
register that will invalidate its data after pLIFETIME cycles. When the shift signal is high, the

expiry_reg will shift in new information from its input at the next clock cycle.

On the next page is the SystemVerilog code for expiry_reg, however, the always_comb block is
incomplete. We have also provided the implementation of expiry_fifo as a handout in case you find

referring to it to be helpful.

You can assume the following typedefs throughout this problem, but the explicit size/width of DATA and
COUNT should not affect your answer:

sys_defs.svh:
 typedef logic[31:0] DATA;

 typedef logic[31:0] COUNT;

[15 points]

Continued on the next page.

Page 8 of 9

Fill in the always_comb for the expiry_reg. You may use typedefs and parameter values wherever
necessary. You may not add internal/external signals to the design. Do not use assign statements.
module expiry_reg #(parameter pLIFETIME=100)
(
 input logic clock, reset,
 input DATA data_in,
 input COUNT counter_in,
 input logic valid_in, shift,
 output DATA data_out,
 output COUNT counter_out,
 output logic valid_out
);

 COUNT counter_next;
 DATA data_next;
 logic valid_next;

 always_comb begin
 /* Your code goes here */

 valid_next = valid_out;
 counter_next = counter_out;

 data_next = data_out;

 if (shift && valid_in) begin // shift in new(er) value

 counter_next = counter_in - 1;

 data_next = data_in;

 valid_next = valid_in;

 end else begin

 if (valid_out) begin

 if (counter_out == 1) begin // expire

 counter_next = 0;

 valid_next = 0;

 end else begin // tick

 counter_next = counter_out - 1;

 end

 end

 end
 end

 always_ff @(posedge clock) begin
 if (reset) begin
 data_out <= 64'b0;
 valid_out <= 0;
 counter_out <= 0;
 end else begin
 data_out <= data_next;
 valid_out <= valid_next;
 counter_out <= counter_next;
 end
 end
endmodule

Problem 7 continued.

Page 9 of 9

8. Consider the following state of a machine implementing what we’ve called the R10K algorithm with
a retirement RAT. [19 points]

RAT ROB RRAT
Arch
Reg #

Phy.
Reg #

 Buffer
Number

PC Executed? Dest.
PRN

Dest
ARN

 Arch
Reg

Phy.
Reg #

0 0 11 0 20 N 0 0 0 1 0

1 12 7 1 24 N 6 1 1 3 7

2 4 12 2 28 Y 7 1 2 4

3 8 5 3 32 Y -- -- 3 5

4 2 4 36 N 8 3 4 2

 5 40 Y 12 1

 6 64 N 12 2 HEAD

 7 68 N 11 0

 8 TAIL

RS PRF
RS# Op

Type
Op1
Ready?

Op1
PRN/value

Op2
Ready?

Op2
PRN/value

Dest
PRN

ROB Phy
Reg

Value Free Valid

0 * Y 4 Y -5 0 0 0 1 -20 N N Y

1 + N 7 N Y 0 -20 8 4 1 2 N Y N

2 + Y 4 N Y 0 -20 6 1 2 3 N Y

3 + Y -15 Y 6 12 6 3 4 N Y Y N

4 + Y -20 N 12 11 7 4 -5 N Y

 5 6 N Y

 6 7 -16 N Y NY N

 7 -15 N Y

 8 9 N Y N

 9 0 Y N

 10 11 Y N

 11 12 Y N N

 12 6 NY N Y N

Say that the instruction in ROB #3 is a branch and it was mispredicted: the next PC should have been
64. Say that the instruction in memory location 64 is R2=R1+R3 and in 68 is R0=R0+R2. Update the
machine to the state where the branch has left the RoB, and the instructions at memory 64 and 68
have dispatched but not started execution. When selecting a PRF use the highest numbered physical
register available, otherwise when making an arbitrary decision, just be sure it is legal. Be sure to
update the head and tail pointers!
Only the non-crossed out values matter. The other values are shown to help with

understanding what was done.

KEY:

• Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes;

otherwise it is the Physical Register Number that is being waited upon.

• Op2 PRN/value is the same as above but for the second argument.

• Dest. PRN is the destination Physical Register Number.

• Dest. ARN is the destination Architectural Register Number.

• ROB is the associated ROB entry for this instruction.

• Free/Valid indicates if the PRF entry is currently available for allocation

and if the valid in it is valid. A free entry should be marked as invalid.

