EECS 470 Midterm Exam

Winter 2007

Name: ____________________________________ unique name: _______________

Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so.

Scores:

	#
	Points

	A.1
	 /18

	A.2-A.4
	 /18

	A.5
	 /9

	B.1
	 /10

	B.2
	 /25

	B.3
	 /20

	Total
	 /100

NOTES:

· Open book and Open notes

· Calculators are allowed, but no PDAs, Portables, Cell phones, etc.

· Don’t spend too much time on any one problem.

· You have about 120 minutes for the exam.

· There are 10 pages including this one.

· Be sure to show work and explain what you’ve done when asked to do so.

· There are two “answer areas” for problem B.3. Clearly mark which one you want graded or we will grade the first one.

Part A – Shortish Answer Questions – 45 points

1. Fill-in-the-blank or circle the best answer [18 points, -2 per wrong/blank, minimum 0]

a. In the algorithm we’ve called T2, an instruction which is committing/completing

execution/issuing will write a value to the ARF. In T3 an instruction which is

committing/completing execution/issuing will write a value to the PRF.

b. In the algorithm we’ve called T1, an instruction will update the RAT if, (and only if)

the RAT is empty/has a pointer to the instruction’s RoB entry/has a pointer to

the instruction’s RS entry. Further, in T1 the ARF will be updated only if

__

c. Given a 32-KB two-way associative cache with 32-byte lines, the index into the cache

will be _______ bits. If the same cache were direct-mapped, you’d need _______

index bits.
d. You would expect a wire 1cm long and 20nm in radius to have a

higher/lower/identical resistance than a wire 2cm long and 10nm in radius.
e. The period of a 100MHz clock is _________ns.
f. Say you have a program that takes 1 hour to run. And for 30 minutes of that time the effort can be freely spread over other processors (it’s perfectly parallel) while the other 30 minutes of it can only be done on one processor (and the serial and parallel times can’t be overlapped). How

long would it take to run this program on 10 computers? _________________
g. A BTB/gshare predictor/BHT/PHT is used to predict the target address of a branch,

while a BTB/gshare predictor/BHT/PHT uses global history to predict if a branch

will be taken or not. A BTB/gshare predictor/BHT/PHT stores the N most recent

taken/not-taken results of a number of branches and is indexed by PC.
h. A three-way superscalar processor could ideally achieve an IPC of __________.

i. In T2, a processor with 8 RS, 16 RoB entries, and 32 architected registers would have a RAT

whose size in bits is 10 / 40 / 64 / 80 / 128 ignoring state bits (like valid etc.)
2. Freedom: (For this problem, you are to limit each answer to a single sentence)
a. In the algorithm we’re calling T3 (using back-pointers) explain exactly when a PRF entry is freed assuming there is no mis-speculation. [3]

b. In the algorithm we’re calling T3 (using back-pointers) explain exactly when a PRF entry is freed by a mis-predicted branch. [3]
c. If we use the RRAT variant of the T3 algorithm, explain exactly when a PRF entry is freed assuming there is no mis-speculation. [4]

3. Consider the pipeline you were to implement for your third programming assignment, but assume that the structural hazard has been removed. A given program consists of 20% loads, 10% stores, 10% branches and 60% ALU operations. If 40% of the branches are not-taken and 40% of all instructions are dependent on the instruction in front of them, what is the expected CPI of the processor on this program? Show you work.[5]
4. Provide a taken/not-taken pattern consisting of exactly 3 branches where a 2-bit saturating up-down predictor will do worse than a 1-bit predictor. Assume the 2-bit starts as weakly not-taken and the 1-bit starts as not-taken. Your answer should be of the form (T, NT, T). [3]

5. Consider an 8-bit shift register. It has inputs labeled “clock”, “in” “reset” and “enable” and 8 outputs A[7:0]. If reset is a one when a rising edge of the clock occurs, A[7:0]=0. Otherwise if enable=1 then the “in” input gets placed into A[7] and the other bits of A are shifted down by one. So for example, if A[7:0]=8’b0111_1100, in=1 and reset =0, then on a rising edge of the clock the new value of A[7:0] would be 8’b1011_1110. If enable=0 and reset=0, A will hold its value.

Place code in the textbox which would cause the code to implement the functionality described above. You may not otherwise add or modify the module. [9]

module sr (reset, enable, in, clock, A);

input reset,enable,in,clock;

output [7:0]A;

reg [7:0]next_A;

reg [7:0]A;

always @*

begin

end

always @(posedge clock)

 A<= #1 next_A;

endmodule
Part B – Longer questions – 55 points

1. Consider a Tournament predictor made up of the following components:

· Local

· 8-entry 3-bit local history table indexed by PC

· 8-entry 2-bit up/down counter indexed by local history

· Global

· 8-entry 2-bit up/down counter indexed by global history

· Tournament

· 8-entry 2-bit up/down counter indexed by PC

Now consider the following program:

Bob: R1=R2+R3

 if(R1==0) goto Next

 R3=R4+R5

Next: if(R6==R3) goto Done

 goto Bob

Done: ………

Assume:

· The global history starts at 001.

· All histories have the right-most bit be the most recent branch.

· The first branch is taken the first time, and not taken each time thereafter.

· The second branch is taken the first time, and not taken each time thereafter.

· The always taken branch is not predicted and does not update the predictor.

· “Bob” is located at 0x104 and every instruction takes up 4 bytes.

Show the table’s status once the “Done” label is reached. [10]
2. Consider the following program:

A:
R1=R2+R1

B:
R2=MEM[R1+4]

C:
R3=MEM[R1+8]

D:
R4=R2*R6
E:
R5=R0*R4

F:
R6=R1*4
G:
R7=MEM[R6+0]
H:
R8=MEM[R2+R7]
Assume add instructions take 1 cycle, multiply instructions take 4 cycles and load instructions take 10 cycles.

a) Complete the dependency graph (above), showing only true dependencies. Label the edge (arrow) of each graph with the amount of time it will take before the instruction on which there is a dependency (the one the arrow comes from) completes. [4]
b) Now assume we start the instructions in order, but we are allowed to overlap non-(true) dependent instructions. We can only start one instruction per cycle. Show the start and finish time of each instruction if we do things as quickly as possible. Assume we can start an instruction in the same cycle an instruction we are dependent finishes (as A and B below). Further, assume that an instruction reads its values during its start cycle (and gets the “new” value from an instruction finishing in that cycle). An instruction writes its value during its finish cycle. [4]
	Start time
	Instruction
	Finish Time

	0
	A
	1

	1
	B
	11

	2
	C
	12

	11
	D
	15

	
	E
	

	
	F
	

	
	G
	

	
	H
	

c) Now assume we are allowed to do the instructions in any order, but we cannot change the instructions (include register names). We wish to get the earliest finish time for the entire code segment as possible. Otherwise we follow the same restrictions as above. The final result in each register should be the same as it is in the original code segment. You can assume that no exceptions occur. List the instructions in start-time order. (hint: watch out for false dependencies!) [6]
	Start time
	Instruction
	Finish Time

	0
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

(This problem continues on the next page)
(This problem is continued from the previous page)

d) The code segment from the previous page has been copied above. We’d like to eliminate any false dependencies. Assuming only registers R0, R3, R5, and R8 are live after this code segment (and that only registers R0-R9 exist) change the above code to eliminate any false dependencies. You are to change as few lines of assembly as possible to achieve this goal. [4]

e) Now assume we are allowed to do the instructions in any order, but we have changed the instructions to eliminate false dependencies (as in part d). Otherwise the problem is identical to part c. [5]
	Start time
	Instruction
	Finish Time

	0
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

3. Consider the following state of a machine implementing what we’ve called Tomasulo’s third algorithm, where we are using an RRAT rather than back-pointers.
	RAT
	
	ROB
	
	RRAT

	Arch
Reg #
	Phy.

Reg #
	
	Buffer

Number
	PC
	Executed?
	Dest.
PRN
	Dest
ARN
	
	Arch
Reg #
	Phy.

Reg #

	0
	10
	
	0
	20
	N
	5
	1
	(HEAD
	0
	0

	1
	8
	
	1
	24
	Y
	6
	4
	
	1
	1

	2
	2
	
	2
	28
	Y
	7
	0
	
	2
	2

	3
	9
	
	3
	32
	N
	--
	--
	
	3
	3

	4
	6
	
	4
	100
	Y
	8
	1
	
	4
	4

	
	
	
	5
	104
	Y
	9
	3
	
	
	

	
	
	
	6
	108
	N
	10
	0
	(TAIL
	
	

	
	
	
	7
	
	
	
	
	
	
	

	
	
	
	8
	
	
	
	
	
	
	

	RS
	
	PRF

	RS#
	Op
Type
	Op1
Ready?
	Op1

PRN/value
	Op2
Ready?
	Op2
PRN/value
	Dest
PRN
	ROB
	
	Phy

Reg

	Value
	Free
	Valid

	0
	MULT
	N
	7
	N
	7
	10
	6
	
	0
	4
	N
	Y

	1
	MULT
	Y
	6
	Y
	6
	5
	0
	
	1
	5
	N
	Y

	2
	Branch
	N
	5
	Y
	36
	--
	3
	
	2
	6
	N
	Y

	3
	
	
	
	
	
	
	
	
	3
	7
	N
	Y

	4
	
	
	
	
	
	
	
	
	4
	8
	N
	Y

	
	
	
	
	
	
	
	
	
	5
	9
	N
	N

	
	
	
	
	
	
	
	
	
	6
	1
	N
	Y

	
	
	
	
	
	
	
	
	
	7
	2
	N
	Y

	
	
	
	
	
	
	
	
	
	8
	3
	N
	Y

	
	
	
	
	
	
	
	
	
	9
	4
	N
	Y

	
	
	
	
	
	
	
	
	
	10
	5
	N
	N

	
	
	
	
	
	
	
	
	
	11
	6
	Y
	N

	
	
	
	
	
	
	
	
	
	12
	7
	Y
	N

Say that the instruction in ROB #3 is a branch and it was mis-predicted: the next PC should have been 36. Say that the instruction in memory location 36 is R2=R0+R4 and in 40 is R0=R2+R3. Update the machine to the state where the branch has left the RoB, and the instructions at memory 36 has issued and executed, but not committed while the one at location 40 has issued but not executed. When faced with an arbitrary decision, just be sure to make a legal choice. Be sure to update the head and tail pointers! [20]

On the following page is an extra copy of this state. You may use this one or the one on the next page but be sure to cross out (with a BIG X) the one you don’t want graded.
This is a copy of the previous state. You may use this one or the previous one but be sure to cross out (with a BIG X) the one you don’t want graded.

	RAT
	
	ROB
	
	RRAT

	Arch
Reg #
	Phy.

Reg #
	
	Buffer

Number
	PC
	Executed?
	Dest.
PRN
	Dest
ARN
	
	Arch
Reg #
	Phy.

Reg #

	0
	10
	
	0
	20
	N
	5
	1
	(HEAD
	0
	0

	1
	8
	
	1
	24
	Y
	6
	4
	
	1
	1

	2
	2
	
	2
	28
	Y
	7
	0
	
	2
	2

	3
	9
	
	3
	32
	N
	--
	--
	
	3
	3

	4
	6
	
	4
	100
	Y
	8
	1
	
	4
	4

	
	
	
	5
	104
	Y
	9
	3
	
	
	

	
	
	
	6
	108
	N
	10
	0
	(TAIL
	
	

	
	
	
	7
	
	
	
	
	
	
	

	
	
	
	8
	
	
	
	
	
	
	

	RS
	
	PRF

	RS#
	Op
Type
	Op1
Ready?
	Op1

PRN/value
	Op2
Ready?
	Op2
PRN/value
	Dest
PRN
	ROB
	
	Phy

Reg

	Value
	Free
	Valid

	0
	MULT
	N
	7
	N
	7
	10
	6
	
	0
	4
	N
	Y

	1
	MULT
	Y
	6
	Y
	6
	5
	0
	
	1
	5
	N
	Y

	2
	Branch
	N
	5
	Y
	36
	--
	3
	
	2
	6
	N
	Y

	3
	
	
	
	
	
	
	
	
	3
	7
	N
	Y

	4
	
	
	
	
	
	
	
	
	4
	8
	N
	Y

	
	
	
	
	
	
	
	
	
	5
	9
	N
	N

	
	
	
	
	
	
	
	
	
	6
	1
	N
	Y

	
	
	
	
	
	
	
	
	
	7
	2
	N
	Y

	
	
	
	
	
	
	
	
	
	8
	3
	N
	Y

	
	
	
	
	
	
	
	
	
	9
	4
	N
	Y

	
	
	
	
	
	
	
	
	
	10
	5
	N
	N

	
	
	
	
	
	
	
	
	
	11
	6
	Y
	N

	
	
	
	
	
	
	
	
	
	12
	7
	Y
	N

Say that the instruction in ROB #3 is a branch and it was mis-predicted: the next PC should have been 36. Say that the instruction in memory location 36 is R2=R0+R4 and in 40 is R0=R2+R3. Update the machine to the state where the branch has left the RoB, and the instructions at memory 36 has issued and executed, but not committed while the one at location 40 has issued but not executed. When faced with an arbitrary decision, just be sure to make a legal choice. Be sure to update the head and tail pointers!
A:	R1=R2+R1

B:	R2=MEM[R1+4]

C:	R3=MEM[R1+8]

D:	R4=R2*R6

E:	R5=R0*R4

F:	R6=R1*4

G:	R7=MEM[R6+0]

H:	R8=MEM[R2+R7]

B

D

1

A

10

Global predictor table

00=NT, 11=T

history

Pred. state

0

11

1

10

2

00

3

00

4

00

5

11

6

11

7

00

Local predictor 2nd level table (PHT)

00=NT, 11=T

history

Pred. state

0

00

1

11

2

10

3

00

4

01

5

01

6

11

7

11

Local predictor 1st level table (BHT)

0=NT, 1=T

ADR[27:29]

History

0

001

1

101

2

100

3

110

4

110

5

001

6

111

7

101

Tournament selector

00=local, 11=global

ADR[27:29]

Pred. �state

0

00

1

01

2

00

3

10

4

11

5

00

6

11

7

10

KEY:

Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes; otherwise it is the Physical Register Number that is being waited upon.

Op2 PRN/value is the same as above but for the second argument.

Dest. PRN is the destination Physical Register Number.

Dest. ARN is the destination Architectural Register Number.

ROB is the associated ROB entry for this instruction.

Free/Valid indicates if the PRF entry is currently available for allocation and if the valid in it is valid. A free entry should be marked as invalid.

KEY:

Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes; otherwise it is the Physical Register Number that is being waited upon.

Op2 PRN/value is the same as above but for the second argument.

Dest. PRN is the destination Physical Register Number.

Dest. ARN is the destination Architectural Register Number.

ROB is the associated ROB entry for this instruction.

Free/Valid indicates if the PRF entry is currently available for allocation and if the valid in it is valid. A free entry should be marked as invalid.

PAGE
8/10

