
Page 1 of 11

EECS 470 Midterm Exam ANSWER KEY

Winter 2011

Name: ____________________________________ unique name: _______________

 Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so.

Scores:

Points

Page 2 /12

Page 3 /12

Page 4 /12

Page 5 /14

Page 6 /6

Page 7 /10

Page 8 /8

Page 9 /8

Pages 10 & 11 /18

Total /100

NOTES:

 Open book and Open notes

 Calculators are allowed, but no PDAs, Portables, Cell phones, etc.

 Don’t spend too much time on any one problem.

 You have about 120 minutes for the exam.

 There are 11 pages including this one.

 Be sure to show work and explain what you’ve done when asked to do so.

 The last page has two “answer areas”. Clearly mark which one you want graded or we will grade the
first one.

Page 2 of 11

1. Fill-in-the-blank or circle the best answer [12 points, -2 per wrong/blank, minimum 0]

a. Given a 16-KB, four-way associative cache with 64-byte lines, you will need __6____ bits to

index the cache. If virtual and physical addresses were both 32-bits in size, the cache would

need about 1KB / 4KB / 6KB / 8KB to store all the tags.

b. In the algorithm we’ve called T2, an instruction which is COMMITTING / completing

execution/ issuing will write a value to the ARF. In T3 an instruction which is committing /

COMPLETING EXECUTION / issuing will write a value to the PRF.

c. You would expect a wire 1cm long with a 200nm2 cross-sectional area to have a

higher / LOWER / identical resistance than a wire 2cm long and 100nm2 cross-sectional area.

d. The period of a 200MHz clock is ____5_____ns.

e. Consider a processor with 8 Reservation Stations, 32 RoB entries, 32 architected registers,

and 64 physical registers. Ignoring state bits, the RAT would use 48 / 64 / 160 / 192 / 256 /

384 bits total.

f. Say you have an ISA where all instructions are 32-bits and which has 16 general purpose

registers and all immediate values are 18-bits. If your instruction set consisted of nothing

other than instructions that used one GPR and one immediate, you could have up to

256 / 512 / 1024 / 2048 / 4096 instructions total in your ISA.

Page 3 of 11

2. Each of the following questions ask you to either put a checkmark (an X) next to a statement or

leave it unmarked. [12 points, -3 for each incorrectly marked (or unmarked) answer, minimum 0]

a. Consider the following statements. Place a checkmark next to those statements that are

generally TRUE when a Tomasulo scheduler is added to a pipeline which previously used in-

order scheduling.

X The pipeline is able to better exploit instruction level parallelism.

_ X_ The pipeline sees an increased utilization of functional units.

___ The pipeline no longer has a need for register renaming.

_ X_ The pipeline can more easily hide memory latency.

b. Place a checkmark next to the statements about instruction level parallelism (ILP) that are

generally TRUE.

X The addition of register renaming exposes additional ILP.

___ It is a waste of resources to add support for thread-level parallelism to a machine

that can effectively exploit ILP.

X You generally find more ILP in scientific/floating point code than in general

purpose/integer code.

X Adding dynamic branch prediction to a pipeline with no branch prediction will

expose additional ILP.

Page 4 of 11

3. Consider a local history predictor where the Branch History Table has 1024 entries each 3 bits in

length and the Pattern History Table consists of a standard 2-bit predictor. The BHT has not tags.

[12 points]

a. How many bits of memory are used in the BHT? The PHT? [3]

BHT bits=__3072___ PHT bits= __16___

b. Say that a single branch is being taken 5 times in a row and then is not taken 2 times in a

row and repeats this pattern forever (T,T,T,T,T,N,N,T,T,T,T,T,N,N, etc.) Assuming there is no

aliasing of any kind, what will be the steady-state prediction rate for this branch? Justify

your answer. [6]

6/7, THE T,T,N CASE WILL BE MISPREDICTED.

c. Assuming that: all instructions are 32-bits in size, all instructions are aligned, and the

machine is byte-addressable, what is the minimum distance (in bytes) two instructions must

be apart from each other in order to alias in the BHT? [3].

Distance between instructions for the BHT to alias = __4096____ bytes

YES, THAT DOES ASSUME THE BITS USED ARE THE LEAST SIGNIFICANT OTHER THAN THE OFFSET.

Page 5 of 11

Given the following design changes to a simple out-of-order pipeline (and assuming no other

changes to the pipeline or workload), what would be the effect on the i) number of instructions

committed (Ninst), ii) the cycles-per-instruction (CPI), iii) clock period (tclk), and iv) silicon area cost

(Acost). For each possible effect, indicate one of the following: no change (Ø), equal or greater (↑),

equal or less (↓), or not enough information to determine (?). Provide the best answer.

[14 points, -.5 per wrong or blank answer]

Design Change Ninst CPI tclk Acost

Shrink the silicon process

from 250nm to 130nm

Ø Ø↑ ↓ ↓

Double the number of

reservation stations

Ø ↓ ↑ ↑

Switch from using a local

dynamic branch predictor to

a global one

Ø ? ? ?

Add compile-time

optimization to the compiler

↑?↓ ? Ø Ø

Double the number of

registers available to the

compiler

↓ ↓ ↑ ↑

Add a multiply instruction to

the pipeline (which previously

it didn’t have)

↓ ↑ ↑? ↑

Double the number of

pipeline stages.

Ø ↑ ↓ ↑

IN SOME CASES, MORE THAN ONE ANSWER WAS ACCEPTED. ALL ACCEPTED ANSWERS ARE LISTED.

Page 6 of 11

4. Answer the following questions about predictors. [6 points]

a. Briefly define the following terms in the context of this graph: [3]

Global: PREDICTION IS BASED ON THE GLOBAL HISTORY REGISTER. THAT IS THE TAKEN/NOT TAKEN

PATTERN OF THE MOST RECENT X BRANCHES.

Local: PREDICTION IS BASED ON THE LOCAL HISTORY OF THE BRANCH (PLUS POTENTIAL ALIASING).

THAT IS THE TAKEN/NOT TAKEN PATTERN OF THE MOST RECENT X TIMES THIS BRANCH WAS

EXECUTED.

Bimodal: PREDICTION IS BASED ON THE PC OF THE BRANCH.

b. Gshare is best understood as combining which of the two above predictor types? Briefly

explain your answer. [3]

THE GLOBAL AND BIMODAL PREDICTORS. GSHARE INVOLVES XORING THE PC AND THE GLOBAL HISTORY

REGISTER TO FIND A PREDICTION.

Page 7 of 11

6. Misprediction CPI penalties [10 points]

a. Give an expression to calculate average CPI of a branch instruction (CPIbr) for an in-order

pipeline, assuming that branches take one cycle to execute when not mispredicted. You are to

assume for this problem that branch predictor and BTB mispredictions never occur at the same

time. Make your expression a function of (possibly all) of the following machines characteristics:

[4]

 Tmp = penalty, in cycles, for a branch or BTB misprediction

 pbr = probability of a branch direction misprediction

 pBTB = probability of a BTB target misprediction

 Nbr = size of the branch predictor (in entries)

 NBTB = size of the BTB (in entries)

CPIbr=______1+(ppr + pBTB)*Tmp____________________________

b. Using the assumptions of part a, what is the average CPI for branch instructions (CPIbr) for the

following designs:

i) A pipeline using predict-not-taken branch prediction and no BTB, and a 3-cycle branch

misprediction latency. On average 65% of all branches are taken on this design while

running. [3]

CPIbr=____2.95____________

ii) A pipeline using a 256-entry Gshare branch predictor with a 92% accuracy, and a 512-entry

BTB with a 82% target prediction accuracy, and a 10-cycle branch/BTB mispredict latency.

[3]

CPIbr=____3.6_____________

Page 8 of 11

7. Answer the following questions about the algorithm we have called T3 (or MIPS R10000) using

what we have called back-pointers. [8 points]

a. When does an instruction write to the PRF? [1]

WHEN IT COMPLETES EXECUTION.

b. When does an instruction free a PRF entry? How does it select which one to free? [3]

A) WHEN IT COMMITS. IT FREES THE ENTRY THAT IT OVERWROTE IN THE RAT AT ISSUE (THE VALUE IN THE

“BACK POINTER”). B) WHEN A MISPREDIECTED BRANCH COMMITS IT FREES ALL PRF ENTRIES THAT DON’T

END UP IN THE RAT AFTER THE RAT IS “FIXED” (SEE BELOW)

WE TOOK ANSWERS THAT ONLY ADDRESSED “A”.

c. Explain exactly what would be involved in “fixing” the RAT once a mispredicted branch hits the

head of the RoB. [4]

YOU WALK THROUGH THE ROB FROM TAIL TO HEAD, PUTTING THE BACK POINTER VALUE INTO THE

APPROPRIATE RAT ENTRY (WHERE IT CAME FROM—THE LOCATION INDEXED BY THE DESTINATION

ARCHITECTED REGISTER OF THE CURRENT INSTRUCTION).

YOU COULD INSTEAD STATE THAT YOU USE THE VALUE CLOSEST TO THE HEAD FOR EACH RAT ENTRY. THAT’S

EQUIVALENT TO THE ABOVE.

Page 9 of 11

8. Consider the above Moore-type state machine where A is an input and Y and Z are outputs.

Without removing or changing any of the code below, you are to finish the implementation of this
state machine in legal, and well written Verilog in a way that meets the EECS 470 programming
style guidelines. State S2 is the reset state, while S1 should be encoded as 2’b01 and S3 as state
2’b10. [8 points]

module statemachine(A,clock,reset,Y,Z);

input A, clock, reset;

output wire Y,Z;

reg [1:0] state, next_state;

always @(posedge clock)

begin

if(reset)

state <= #1 2’b00;

else

state <= #1 next_state;

end

`define S1 2'b01

`define S2 2'b00

`define S3 2'b10

always@*

begin

 if(state==`S2)

 next_state=(A ? `S1: `S3);

 else if(state==`S1)

 next_state=(A ? `S1: `S2);

 else

 next_state=(A ? `S3: `S2);

end

assign Y=(state== `S3);

assign Z=(state!= `S1);

endmodule

COMMON ERRORS:

 USE ALWAYS BLOCK TO ASSIGN TO Y AND Z.

 NOT BE SURE NEXT STATE IS DEFINED ON ALL PATHS (EVEN THE “ILLEGAL STATE!).

S1
Y=0
Z=0

S2
Y=0
Z=1

S3
Y=1
Z=1

A

!A !A

A

!A A

Page 10 of 11

9. Consider the following state of a machine implementing what we’ve called Tomasulo’s third (or the
R10K algorithm) with a retirement RAT.

RAT ROB RRAT
Arch
Reg #

Phy.
Reg #

 Buffer
Number

PC Executed? Dest.
PRN

Dest
ARN

 Arch
Reg

Phy.
Reg #

0 8 12 0 0 N 0 1 HEAD 0 8

1 3 1 1 4 N 1 1 1 7 1

2 9 11 2 8 Y 2 3 2 6

3 2 3 12 Y - - 3 5 2

4 10 4 4 16 N 3 1 4 4

 5 20 Y 9 2

 6 24 Y 10 4 TAIL

 7 80 N 11 2 HEAD
 8 84 N 12 0 TAIL

RS PRF
RS# Op

Type
Op1
Ready?

Op1
PRN/value

Op2
Ready?

Op2
PRN/value

Dest
PRN

ROB Phy
Reg

Value Free Valid

0 + N 0 Y 4 3 4 0 23 N Y N

1 + Y 14 Y 4 11 7 1 -1 14 N N Y

2 + N 11 Y 2 12 8 2 4 N Y

3 + N 0 Y 2 1 1 3 11 N Y N

4 * Y 3 Y 4 0 0 4 4 N Y

 5 3 N Y Y N

 6 0 N Y

 7 1 N Y Y N

 8 2 N Y

 9 8 N Y Y N

 10 16 N Y Y N

 11 12 Y N N

 12 14 Y N N

Say that the instruction in ROB #3 is a branch and it was mis-predicted: the next PC should have been
80. Say that the instruction in memory location 80 is R2=R1+R4 and in 84 is R0=R2+R0. Update the
machine to the state where the branch has left the RoB, and the instructions at memory 80 and 84
have issued but not completed execution. When faced with an arbitrary decision, just be sure to make
a legal choice. Be sure to update the head and tail pointers! [18]

On the following page is an extra copy of this state. You may use this one or the one

on the next page but be sure to cross out (with a BIG X) the one you don’t want

graded.

KEY:
 Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes;

otherwise it is the Physical Register Number that is being waited upon.

 Op2 PRN/value is the same as above but for the second argument.

 Dest. PRN is the destination Physical Register Number.

 Dest. ARN is the destination Architectural Register Number.

 ROB is the associated ROB entry for this instruction.

 Free/Valid indicates if the PRF entry is currently available for allocation

and if the valid in it is valid. A free entry should be marked as invalid.

Page 11 of 11

This is a copy of the previous state. You may use this one or the previous one but be

sure to cross out (with a BIG X) the one you don’t want graded.

9. Consider the following state of a machine implementing what we’ve called Tomasulo’s third (or the
R10K algorithm) with a retirement RAT.

RAT ROB RRAT
Arch
Reg #

Phy.
Reg #

 Buffer
Number

PC Executed? Dest.
PRN

Dest
ARN

 Arch
Reg

Phy.
Reg #

0 8 0 0 N 0 1 HEAD 0 8

1 3 1 4 N 1 1 1 7

2 9 2 8 Y 2 3 2 6

3 2 3 12 Y - - 3 5

4 10 4 16 N 3 1 4 4

 5 20 Y 9 2

 6 24 Y 10 4 TAIL

 7

 8

RS PRF
RS# Op

Type
Op1
Ready?

Op1
PRN/value

Op2
Ready?

Op2
PRN/value

Dest
PRN

ROB Phy
Reg

Value Free Valid

0 + N 0 Y 4 3 4 0 23 N N

1 1 -1 N N

2 2 4 N Y

3 + N 0 Y 2 1 1 3 11 N N

4 * Y 3 Y 4 0 0 4 4 N Y

 5 3 N Y

 6 0 N Y

 7 1 N Y

 8 2 N Y

 9 8 N Y

 10 16 N Y

 11 12 Y N

 12 14 Y N

Say that the instruction in ROB #3 is a branch and it was mis-predicted: the next PC should have been
80. Say that the instruction in memory location 80 is R2=R1+R4 and in 84 is R0=R2+R0. Update the
machine to the state where the branch has left the RoB, and the instructions at memory 80 and 84
have issued but not completed execution. When faced with an arbitrary decision, just be sure to make
a legal choice. Be sure to update the head and tail pointers! [18]

KEY:
 Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes;

otherwise it is the Physical Register Number that is being waited upon.

 Op2 PRN/value is the same as above but for the second argument.

 Dest. PRN is the destination Physical Register Number.

 Dest. ARN is the destination Architectural Register Number.

 ROB is the associated ROB entry for this instruction.

 Free/Valid indicates if the PRF entry is currently available for allocation

and if the valid in it is valid. A free entry should be marked as invalid.

