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EECS 470 Midterm Exam -ANSWERS 
Winter 2012 

 

Name: _____KEY_______________________________    unique name: _______________ 

  
Sign the honor code:  
   
I have neither given nor received aid on this exam nor observed anyone else doing so. 

 
 
___________________________________ 
 

 
 
Scores: 

Page # Points 

2 /20 

3 /11 

4 /13 

5 /15 

6 /10 

7 /16 

8 & 9 /15 

Total /100 
 

NOTES: 
 Open book and Open notes 

 Calculators are allowed, but no PDAs, Portables, Cell phones, etc. 

 Don’t spend too much time on any one problem.   

 You have about 120 minutes for the exam. 

 There are 9 pages including this one. 

 Be sure to show work and explain what you’ve done when asked to do so. 

 There are two “answer areas” for the last problem.  Clearly mark which one you want graded 
or we will grade the first one.  
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Multiple choice/fill in the blank [20 points, -2 per blank or wrong answer] 
 

a. Say a processor with a 32-bit address space (byte addressed) has an L1 cache with a 16KB 
data store which is 4-way associative.  If the cache uses 32-byte blocks, there are 
__128____ sets in the cache and the tag store is 512 / 1280 / 2968 / 4096 / 5552 bytes 
(including only the tags themselves). 
 

b. Over time, devices and wires have gotten smaller.  This has generally resulted in faster 
devices (transistors) and slower wires.  The wire delay is proportional to the “RC” delay.  
This increased delay in smaller wires is because if the wires get narrower the resistance / 
capacitance / inductance of a wire of fixed length goes up / down only slightly while the 
resistance / capacitance / inductance of that wire goes up / down significantly. 
 

c. Consider an add instruction.  In the original Tomasulo’s algorithm, the ARF is updated only 
when the add finishes execution and the RAT points to the add / finishes execution / 
commits / the RAT points to the instruction, and the instruction is at the head of the ROB. 
 
In the “P6” algorithm, the ARF is updated only when the add finishes execution and the RAT 
points to the add / finishes execution / commits / the RAT points to the add, and the add 
is at the head of the ROB. 
 

d. If, in the “R10K” algorithm, the RAT had only one write port; you could only have one 
instruction that writes to a register dispatch / start execution / complete execution / retire 
per cycle. 
 

e. In the “R10K” algorithm,  we will free all PRF entries / no PRF entries / those PRF entries 
which aren’t pointed to by the RRAT / those PRF entries in the RAT that are overwritten by 
the RRAT  when a branch mispredict occurs.  
 

f. For the original implementation of Tomasulo’s algorithm, the primary source of high-latency 
instructions were store instructions / floating point instructions / integer square root 
instructions. 
 

g. In the “P6” algorithm, the RAT points to a reorder buffer entry / a reservation station / a 
physical register / an execution unit. 
 

h. “Energy constrained computing” refers to devices where the primary concern is related to 
the device getting too hot / the device using battery power too quickly / the device 
needing a higher voltage than we can easily supply. 
 

i. A CMOV instruction is commonly used to eliminate a branch / load / store / floating point 
instruction. 
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Short answer [24 points] 
Consider the pipeline you were to implement for your third programming assignment, but assume that 

the structural hazard has been removed.  A given program consists of 20% loads, 10% stores, 10% 

branches and 60% ALU operations.  If 40% of the branches are not-taken and 40% of all instructions are 

dependent on the instruction in front of them, what is the expected CPI of the processor on this 

program?  Show you work. [5 points] 

 

 

Every instruction takes 1 cycle, plus additional penalties for Loads (1 cycle MEM->EX 

forwarding) and mispredicted branches (3 cycles squashing IF,ID,EX) 

 

CPI = 1 + (1 cycle) * (20% loads) * (40% dependent) + (3 cycles) * (10% branches) * (60% 

mispredict) 

= 1 + .08 + .18 

= 1.26 

 
 

 

 

 

 

 

 

1. Consider the case of self-modifying code1 in the context a processor which implements a standard 
5-stage pipeline.  [6 points] 

a. In a single sentence, describe the hazard that self-modifying code creates. [3] 
 
Instructions currently in flight (already fetched) could be overwritten, causing the pipeline to 
execute incorrect instructions. (One point for each / any of: A "Read-After-Write" hazard in 
instruction memory / PC / IF). 
 
 

b. Briefly explain how you would detect the issue.  Specifically, what would you be looking for 
in which stage(s)? [3] 
 
Each stage should snoop on the Proc2DMem signal (from the MEM stage), whenever it is valid, 
the address should be compared against the stage's PC.  

                                                           
1
 Self modifying code is when a program modifies a memory location and then executes that memory location. 
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2. Say that in the “R10K” algorithm, you have 64 RoB entries, 8 RS entries, 96 physical registers and 
the ISA supports 32 architected registers.  How many bits would you need for the RRAT (just the 
pointers in the table, not valid bits, the free list or anything else)?  Show your work. [4 points] 
 
32 architected registers => 32 table entries 

96 physical registers => ceil(log2(96)) = 7 bits to uniquely address them. 

32 * 7 = 224 bits 

 
 
 
 
 

3. Write a Verilog module which implements a 4-bit modulo2 up-counter with enable and 
synchronous reset.  It takes three inputs: clock (clk), enable (en) and reset (reset).  Its only output is 
the four bit count (Q[3:0]).  You are to follow the Verilog coding guidelines for the course.  Highly 
inefficient code will receive fewer points. [9 points] 

 
 
module counter( 

    input            clock, 

    input            reset, 

    input            en, 

    output reg [3:0] Q, 

); 

 
//synopsys sync_set_reset "reset" 

always @(posedge clock) begin 

    if (reset) 

        Q <= `SD 0; 

    else if (en) 

        Q <= `SD Q + 4'b1; 

end 

 
endmodule 

 
 
 
 
 
 
 
 
 

                                                           
2
 “modulo” means that the counter wraps around.  So this counter, while enabled, should count (0, 1, 2, … 14, 15, 0, 1, etc.). 

It should reset to 0. 



Page 5 of 9 
 

Longer answer [41 points] 
1. Consider the following pseudo-assembly code: 

r3=1000 

r5=0 

r6=0 

bob: r1=MEM[r3+0]   // THE LOAD   

if(r1>0) goto TWO  // Branch 1 – Notice the target! 

r5=r5+1 

 r6=r6+r1 

r6=r6+r5 

r6=r6/2 

ONE: if(r1>=0) goto TWO   // Branch 2 

 r6=r6+1 

TWO: r3=r3+4 

 if(r5<50000) goto bob  // Branch 3 

 

“bob” has an address of 0x100. The predictors all use the least significant bits of the PC other than the word-

offset.  Predictors and patterns are all initialized to all zeros (not taken). 

You are to consider how different branch predictors will behave on this code under different circumstances.  

 Case 1: The data loaded from memory is 1 the first time, 0 the second, 1 the third, 0 the forth and 

follows that pattern forever (1, 0, 1, 0, 1, 0, etc.) 

 Case 2: The data loaded from memory is 0 the first time, -1 the second, -1 the third, -1 the forth and 

follows that pattern forever (0, -1 -1, -1, 0, -1, -1, -1, etc.) 

 Case 3: The data loaded is (1, 0, -1, 1, 0, -1, 1, 0, -1, etc.) 

 

You are now to consider 2 branch predictors: 

 Predictor 1: A PC-based predictor with 8 entries each a 1 bit predictor. 

 Predictor 2: A local pattern history predictor.  The BHT has 16 entries, each with 2 bits of history.  

The predictors are each 1 bit. 

 

What are the expected prediction rates for each of the following (percentage of time right)?  Your answers must 

be correct within 1.0%.  [15 points, -1 per wrong or blank box, min 0] 

 Case 1 Case 2 Case 3 

Predictor 1 Predictor 2 Predictor 1 Predictor 2 Predictor 1 Predictor 2 

Branch 1 50 100 0 75 33 66 

Branch 2 100 100 50 75 0 50 

Branch 3 50 100 0 100 33 100 
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2. Given the following design changes to a simple out-of-order pipeline (and assuming no other 
changes to the pipeline or workload), what would be the effect on the i) number of instructions 
committed (Ninst), ii) the cycles-per-instruction (CPI), iii) clock period (tclk), and iv) silicon area cost 
(Acost).  For each possible effect, indicate one of the following: no change (Ø), equal or greater (↑), 
equal or less (↓), or not enough information to determine (?).  Provide the best answer.  For a few 
of the boxes, we are looking for a short (one sentence) written explanation.   
[10 points, -.5 per wrong or blank answer, -1 per wrong or blank explanation ] 
 

Design Change Ninst CPI tclk Acost 

Increase the number of ROB 

entries 

Ø ↓ ↑ ↑ 

Increase the number of 

architected registers 

↓ *1 

↓ 

↑ ↑ 

Change from the original 

Tomasulo’s algorithm to the “P6” 

scheme. 

Ø *2 

? 

(↓or ↑) 

↑Ø ↑ 

Implement early branch 

resolution 

Ø ↓ ↑Ø ↑ 

Improve TCPU by using CMOVs to 

remove certain branches. 

*3 

↑ 

↓ ↑Ø Ø↑ 

In the case where more than one answer is given, any of those answers were accepted.  For the *2 

question, we took any of those 3 answers (though ? is the best answer) but only gave credit on *2 if 

you identified both cases. 

Provide a short (one sentence) explanation of your answer for the “*ed” boxes. 

*1:  There are fewer spills and fills. 

 

 

*2: Better CPI due to branches stalling instructions after them, worse due to adding RoB as structural 

hazard. 

 

 

*3: replacing a branch with a CMOV often involves adding other instructions.  
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3. Consider a set of code where there are two classes of instructions. 

 “Short” instructions are not dependent on any other instruction and can execute in 3 cycles. 

 “Long” instructions are not dependent on any other instruction and can execute in 20 cycles. 

 “Dependent” instructions are (only) dependent on the instruction in front of them and take 3 cycles to 
execute. 

 
Say you have a machine which can issue one instruction per cycle, finish execution of one instruction per 
cycle, and retire one instruction per cycle. This machine implements what we have called the “P6” algorithm 
and it keeps an instruction in its RS until that instruction has finished executing.  The machine has an RS size 
of 16 and a RoB size of 64. You may assume the machine otherwise has unlimited resources (execution units 
etc.) Show your work! [16 points] 

 
a. What is the best CPI this machine could achieve if the program being run consisted of only “long” 

instructions? [4] 
In steady state, 16 instructions will enter RS, first one will stall for 4 cycles, then all 16 will leave 
without stalling.  Next set of 16 will do the same thing.  So 20/16=1.25 
 
 
 
 
 

b. What is the best CPI this machine could achieve if the program being run consisted of only 
“dependent” instructions? [4] 
Each has to wait to start until the one in front of it is done.  3. 
 
 
 
 
 
 

c. What is the best CPI this machine could achieve if the program being run consisted of groups of 200 
instructions, where the first 199 were “dependent” and the last was “short”. Assume there are a 
large number of these groups. (So the code is 199 dependent, 1 short, 199 dependent, 1 short, etc.) 
[4] 
You’d get groups of 200 instructions, each of which takes 600 cycles to execute.  However, each 
group could overlap while both were in the system.  RS will be limiting factor, so overlap will be for 
15*3 or 45 cycles.  So (600-45)/200=2.775 
 
 

d. What is the best CPI this machine could achieve if the program being run consisted of groups of 3 
instructions, where the first 2 were “dependent” and the last was “short”. Assume there are a large 
number of these groups. (So the code is 2 dependent, 1 short, 2 dependent, 1 short, etc.) [4] 
1.  Can easily work on three different dependency chains at the same time. 
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Consider the following state of a machine implementing what we’ve called the “R10K” algorithm. [15 points] 

RAT  ROB  RRAT 
Arch  
Reg # 

Phy. 
Reg # 

 Buffer 
Number 

PC Executed? Dest.  
PRN 

Dest  
ARN 

 Arch  
Reg 
# 

Phy. 
Reg # 

0 0  0 20 N 5 1  HEAD 0 0 

1 6  1 24 Y 12 3  1 1 

2 7  2 28 N 6 1  2 2 

3 12  3 32 Y -- --  3 3 

4 8  4 36 Y 7 2  4 4 

   5 40 N 8 4 TAIL 

   6     

   7     

   8     

 

RS  PRF 
RS# Op 

Type 
Op1 
Ready? 

Op1 
PRN/value 

Op2 
Ready? 

Op2 
PRN/value 

Dest 
PRN 

ROB  Phy 
Reg  
#  

Value Free Valid 

0 + N 5 Y 13 6 2  0 4 N Y 

1 * Y 6 Y 7 5 0  1 5 N Y 

2 + N 6 Y 4 8 5  2 6 N Y 

3         3 7 N Y 

4         4 8 N Y 

         5 9 N N 

         6 1 N N 

         7 21 N Y 

         8 3 N N 

         9 4 Y N 

         10 5 Y N 

         11 6 Y N 

         12 13 N Y 

 
Say that the instruction in ROB #3 is a branch and it was mis-predicted: The next PC should have been 100.  Say 
that the instruction in memory location 100 is R2=R0+R4 and that the instruction in 104 is R0=R2+R3.  Update 
the machine to the state where the branch has left the RoB, and the instructions at memory 100 has been 
dispatched and executed, but not committed while the one at location 40 has been dispatched but not 
executed.  When faced with an arbitrary decision, just be sure to make a legal choice. Be sure to update the 
head and tail pointers!  
 
 

On the following page is an extra copy of this problem.  You may use this one or the one on 

the next page but be sure to cross out (with a BIG X) the one you don’t want graded.   

KEY: 
 Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes; 

otherwise it is the Physical Register Number that is being waited upon. 

 Op2 PRN/value is the same as above but for the second argument. 

 Dest. PRN is the destination Physical Register Number. 

 Dest. ARN is the destination Architectural Register Number. 

 ROB is the associated ROB entry for this instruction. 

 Free/Valid indicates if the PRF entry is currently available for allocation 

and if the valid in it is valid.  A free entry should be marked as invalid. 
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This is a copy of the previous state.  You may use this one or the previous one but be 
sure to cross out (with a BIG X) the one you don’t want graded.  
  

 

 

RS  PRF 
RS# Op 

Type 
Op1 
Ready? 

Op1 
PRN/value 

Op2 
Ready? 

Op2 
PRN/value 

Dest 
PRN 

ROB  Phy 
Reg  
#  

Value Free Valid 

0 + N 5 Y 13 6 2  0 4 N Y 

1 * Y 6 Y 7 5 0  1 5 N->Y Y->N 

2 + N 6 Y 4 8 5  2 6 N Y 

3 + Y 4 Y 8 10 6  3 7 N->Y Y->N 

4 + Y 12 Y 13 11 7  4 8 N Y 

         5 42 N->Y N 

         6 55 N N->Y 

         7 21 N->Y Y->N 

         8 3 N->Y N->N 

         9 4 Y N 

         10 5 Y->N N->Y 

         11 6 Y->N N 

         12 13 N Y 

 
Say that the instruction in ROB #3 is a branch and it was mis-predicted: The next PC should have been 100.  Say 
that the instruction in memory location 100 is R2=R0+R4 and that the instruction in 104 is R0=R2+R3.  Update 
the machine to the state where the branch has left the RoB, and the instructions at memory 100 has been 
dispatched and executed, but not committed while the one at location 40 has been dispatched but not 
executed.  When faced with an arbitrary decision, just be sure to make a legal choice. Be sure to update the 
head and tail pointers!  
Note: Free/crossed out values don’t matter. 

RAT  ROB  RRAT 
Arch  
Reg # 

Phy. 
Reg # 

 Buffer 
Number 

PC Executed? Dest.  
PRN 

Dest  
ARN 

 Arch  
Reg 
# 

Phy. 
Reg # 

0 0->11  0 20 N 5 1  HEAD 0 0 

1 6  1 24 Y 12 3  1 1->6 

2 7->10  2 28 N 6 1  2 2 

3 12  3 32 Y -- --  3 3->12 

4 8->4  4 36 Y 7 2  4 4 

   5 40 N 8 4 TAIL 

   6 100 Y 10 2  HEAD 

   7 104 N 11 0 TAIL 

    8     

KEY: 
 Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes; 

otherwise it is the Physical Register Number that is being waited upon. 

 Op2 PRN/value is the same as above but for the second argument. 

 Dest. PRN is the destination Physical Register Number. 

 Dest. ARN is the destination Architectural Register Number. 

 ROB is the associated ROB entry for this instruction. 

 Free/Valid indicates if the PRF entry is currently available for allocation 

and if the valid in it is valid.  A free entry should be marked as invalid. 

 


