
Page 1 of 11

EECS 470 Midterm Exam

Winter 2014

Name: ____________________________________ unique name: _______________

 Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so.

Scores:

Points

Page 2 /12

Page 3 /10

Page 4 /10

Page 5 /13

Page 6 /11

Page 7 /11

Page 8 /6

Page 9 /9

Pages 10 & 11 /18

Total /100

NOTES:

 Open book and Open notes

 Calculators are allowed, but no PDAs, Portables, Cell phones, etc.

 Don’t spend too much time on any one problem.

 You have about 120 minutes for the exam.

 There are 11 pages including this one.

 Be sure to show work and explain what you’ve done when asked to do so.

 The last page has two “answer areas”. Clearly mark which one you want graded or we will grade the
first one.

Page 2 of 11

1. Fill-in-the-blank or circle the best answer [12 points, -2 per wrong/blank, minimum 0]

a. Given an 8-KB, two-way associative cache with 16-byte lines, you will need ______ bits to
index the cache. If virtual and physical addresses were both 32-bits in size, the cache would
need about 1KB / 2KB / 4KB / 8KB / 16KB to store all the tags.

b. When running a given program on a processor which has implemented the P6 scheme, it is
discovered that the program is fetching twice as many instructions as it is committing. The
branch prediction rate for this program is about 95% and only 10% of all instructions are
branches. Given that which of the following can you most reasonably be sure is true?

 The mispredictions are mostly from the same branch

 This processor has a RoB with more than 128 entries.

 The mispredictions are tightly grouped (they mostly occur one after the other or
at least soon after another misprediction)

 The processor is using a purely global predictor

c. You would expect a wire 2mm long with a 200nm2 cross-sectional area to have a
higher / lower / identical resistance than a wire 1mm long and 50nm2 cross-sectional area.

d. The period of a 2GHz clock is _________ns.

e. Say you have an ISA where all instructions are 32-bits, there are 32 general purpose
registers, and all immediate values are 16-bits. If your instruction set consisted of nothing
other than instructions that used two GPRs and one immediate, you could have up to
64 / 256 / 512 / 1024 / 4096 instructions in your ISA.

f. A processor using the R10K algorithm has 64 RoB entries and 16 RS entries. Assuming the
ISA has 32 architected registers, you can be reasonably certain that the RAT uses 128 / 224
/ 256 / 408 / 512 bits to store tags (not including valid bits and the like).

g. Arguably, the largest problem with using the original version of Tomasulo’s algorithm for a
modern processor is that it requires too large of a RoB / requires too large of a branch
predictor / can’t provide precise exceptions / won’t work with floating point operations.

Page 3 of 11

2. Given the following design changes to a simple out-of-order pipeline (and assuming no other
changes to the pipeline or workload), what would be the effect on the i) number of instructions
committed (Ninst), ii) the cycles-per-instruction (CPI), iii) clock period (tclk), and iv) time to execute a
given program (tCPU). For each possible effect, indicate one of the following: no change (Ø), equal
or greater (↑), equal or less (↓), or not enough information to determine (?). Provide the
best/most likely answer. Leave the boxes with X’s blank.
[10 points, -1 per wrong or blank answer, minimum 0]

Design Change Ninst CPI tclk tcpu

Change from the original Tomasulo’s algorithm to
the R10K scheme

An in-order processor goes from 6 stages to 8
stages.

Remove all caches

Do what’s needed to replace short, hard-to-predict
branches with CMOV
(assume the ISA has CMOV in it already)

Increase the size of the RoB while keeping the RS
constant in size.

Page 4 of 11

3. Write a Verilog module which implements each of the following devices. You are to keep the signal
names the same as they are in the provided figures. Your code should be reasonably efficient.
Minor syntax errors will be ignored. [10 points]

a. The 4 to 1 MUX shown below. [5]

b. The registers shown below. [5]

A

B

C

D

0

1

2

3

S[1:0]

Out

D flip-flop
D Q

 C QB

D flip-flop
D Q

 C QB

In

Clk

Out

Page 5 of 11

4. Consider the following pseudo-assembly code. [8 points]
R1=R2+R3
R2=R1+R1
R3=R1+8
R4=R3+R4
R4=R1+R3
R2=R2+R3
R3=R3+R8

In class we discussed that programs can be evaluated for ILP independent of a computer
implementation. ILP of a program is the average number of instructions that could be executed in
parallel. So if there were 2 instructions and they could be executed at the same time, the ILP would
be “2”, but if they couldn’t be (due to some dependency) the ILP would be 1.

a. What is the ILP available in this code assuming there is no renaming? Show your work. [4]

b. What is the ILP available in this code assuming renaming is happening? Show your work. [4]

5. Consider the pipeline you were to implement for your third programming assignment, but assume
that the structural hazard has been removed and branches are resolved in the execute stage. A
given program consists of 25% loads, 10% stores, 10% branches and 60% ALU operations. If 40% of
the branches are not-taken and 30% of all instructions are dependent on the instruction in front of
them, what is the expected CPI of the processor on this program? Show your work [5 points]

Page 6 of 11

6. Consider a non-superscalar processor implementing the P6 algorithm. This processor has 32
architected registers, 64 RoB entries and 8 reservation stations. List all input and output that will
be used to implement the RAT by filing in the table below. We’ve done one signal for you as an
example. [11 points]

Description of signal Input/
Output

Why it’s needed How
many
bits?

Architected destination
register

Input It needs to be renamed 5

Page 7 of 11

7. An instruction can be said to be “in the shadow” of an earlier instruction if it is directly or indirectly
data dependent on that earlier instruction. Say you have a non-superscalar processor which
implements the R10K algorithm. It supports an ISA with 32 architected registers and has 64 RoB
entries, 8 reservations stations and 96 PRF entries. Say a high-latency load is at the head of the
RoB and the processor has stopped dispatching instructions because of this load. How many
instructions would you expect to have in the RoB if: [4 points]

a. All instructions after this load are in the load’s shadow? [1]

b. No instructions after this load are in the load’s shadow? [1]

c. Half the instructions after this load are in the load’s shadow? [2]

8. Early branch resolution [7 points]
a. If we are implementing early branch resolution using Branch Register Alias Tables (BRATs),

at what point will we need to allocate a BRAT? [3]

b. In order to recover the PRF’s free list, we typically have a free list associated with each
BRAT. If we wish to be able to simply copy that free list over to the main free list on a
misprediction we need to do a number of things. Circle all the things that need to happen.
You may assume this processor is not superscalar. [4, no partial credit]

 Upon dispatch of the branch, copy the RAT’s free list to the BRAT’s free list after
updating the free list to reflect any destination register(s) the branch might have.

 Upon dispatch of a branch, copy the RAT’s free list to the BRAT’s free list before
updating the free list to reflect any destination register(s) the branch might have.

 Update the BRAT’s free list as other instructions dispatch.

 Update the BRAT’s free list as instructions commit.

Page 8 of 11

9. Say we have the following code segment in pseudo-assembly:

If(R1!=R2) goto NEXT
R5=R5+R1

NEXT:

And say we’ve got the following instruction available to us: CMOV(Rx,Ry,Rz) where the instruction
sets Ry=Rz if and only if Rx!=0.

Rewrite the above code to remove the branch. You may only use R6 and R7 as a “scratch”
registers: all other registers are holding live values. You may not read or write memory and you
may assume you have all the standard ALU operations (add, subtract, multiply, NOT, AND, etc.)
available to you. [6 points]

Page 9 of 11

10. Consider the following pseudo-assembly code:
r3=1000
r5=0
r6=0

Top: r1=MEM[r3+0] // Load #1
if(r1==0) goto Nxt // Branch 1
r6=r6+1

Nxt: r2=MEM[r1] // Load #2
 if(r2>0) goto Lst // Branch 2

r6=r6+1
Lst: r3=r3+8
 r5=r5+r2
 if(r3<500000) goto Top // Branch 3

The predictors all use the least significant bits of the PC other than the word-offset. Predictors and patterns are
all initialized to all zeros (not taken).

 Branch #1 follows the pattern TTTTNN forever (starting with taken).

 Branch #2 follows the pattern TNTNTN forever (starting with taken).

You are now to consider 2 branch predictors:

 Predictor 1: A 1-bit bimodal predictor with 8 entries. Each entry is a 1 bit predictor.

 Predictor 2: A local pattern history predictor. The BHT has 16 entries, each with 2 bits of history.
The predictors are each 1 bit.

What are the expected prediction rates for each of the following (percentage of time right)? Your answers must
be correct within 1.0%. [9 points, -2 per wrong or blank box, min 0]

 Predictor 1 Predictor 2

Branch 1

Branch 2

Branch 3

Page 10 of 11

11. Consider the following state of a machine implementing what we’ve called the R10K algorithm with
a retirement RAT.

RAT ROB RRAT
Arch
Reg #

Phy.
Reg #

 Buffer
Number

PC Executed? Dest.
PRN

Dest
ARN

 Arch
Reg

Phy.
Reg #

0 12 0 0 N 7 0  HEAD 0 2

1 3 1 4 N 8 0 1 3

2 9 2 8 Y 9 2 2 4

3 10 3 12 Y -- -- 3 6

4 5 4 16 N 11 0 4 5

 5 20 Y 10 3

 6 24 Y 12 0

 7  TAIL

 8

RS PRF
RS# Op

Type
Op1
Ready?

Op1
PRN/value

Op2
Ready?

Op2
PRN/value

Dest
PRN

ROB Phy
Reg

Value Free Valid

0 + N 7 Y 36 11 4 0 5 Y N

1 * Y -1 Y 6 7 0 1 5 Y N

2 + N 7 N 7 8 1 2 4 N Y

3 3 5 N Y

4 4 6 N Y

 5 7 N Y

 6 -1 N Y

 7 5 N N

 8 5 N N

 9 36 N Y

 10 1 N Y

 11 4 N N

 12 2 N Y

Say that the instruction in ROB #3 is a branch and it was mis-predicted: the next PC should have been
60. Say that the instruction in memory location 60 is R2=R1+R4 and in 64 is R0=R0+R2. Update the
machine to the state where the branch has left the RoB, and the instructions at memory 60 and 64
have dispatched but not started execution. When selecting a PRF use the lowest numbered physical
register available, otherwise when making an arbitrary decision, just be sure it is legal. Be sure to
update the head and tail pointers! [18]

On the following page is an extra copy of this state. You may use this one or the one
on the next page but be sure to cross out (with a BIG X) the one you don’t want
graded.

KEY:
 Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes;

otherwise it is the Physical Register Number that is being waited upon.

 Op2 PRN/value is the same as above but for the second argument.

 Dest. PRN is the destination Physical Register Number.

 Dest. ARN is the destination Architectural Register Number.

 ROB is the associated ROB entry for this instruction.

 Free/Valid indicates if the PRF entry is currently available for allocation

and if the valid in it is valid. A free entry should be marked as invalid.

Page 11 of 11

This is a copy of the previous state. You may use this one or the previous one but be
sure to cross out (with a BIG X) the one you don’t want graded.

RAT ROB RRAT
Arch
Reg #

Phy.
Reg #

 Buffer
Number

PC Executed? Dest.
PRN

Dest
ARN

 Arch
Reg

Phy.
Reg #

0 12 0 0 N 7 0  HEAD 0 2

1 3 1 4 N 8 0 1 3

2 9 2 8 Y 9 2 2 4

3 10 3 12 Y -- -- 3 6

4 5 4 16 N 11 0 4 5

 5 20 Y 10 3

 6 24 Y 12 0

 7  TAIL

 8

RS PRF
RS# Op

Type
Op1
Ready?

Op1
PRN/value

Op2
Ready?

Op2
PRN/value

Dest
PRN

ROB Phy
Reg

Value Free Valid

0 + N 7 Y 36 11 4 0 5 Y N

1 * Y -1 Y 6 7 0 1 5 Y N

2 + N 7 N 7 8 1 2 4 N Y

3 3 5 N Y

4 4 6 N Y

 5 7 N Y

 6 -1 N Y

 7 5 N N

 8 5 N N

 9 36 N Y

 10 1 N Y

 11 4 N N

 12 2 N Y

Say that the instruction in ROB #3 is a branch and it was mis-predicted: the next PC should have been
60. Say that the instruction in memory location 60 is R2=R1+R4 and in 64 is R0=R0+R2. Update the
machine to the state where the branch has left the RoB, and the instructions at memory 60 and 64
have dispatched but not started execution. When selecting a PRF use the lowest numbered physical
register available, otherwise when making an arbitrary decision, just be sure it is legal. Be sure to
update the head and tail pointers! [18]

KEY:
 Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes;

otherwise it is the Physical Register Number that is being waited upon.

 Op2 PRN/value is the same as above but for the second argument.

 Dest. PRN is the destination Physical Register Number.

 Dest. ARN is the destination Architectural Register Number.

 ROB is the associated ROB entry for this instruction.

 Free/Valid indicates if the PRF entry is currently available for allocation

and if the valid in it is valid. A free entry should be marked as invalid.

