
 1/8

EECS 470 Midterm Exam Answers
Winter 2018

Name: ____________________________________ unique name: _______________

Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so.

Scores:

NOTES:
 Open book and Open notes

 Calculators are allowed, but no PDAs, Portables, Cell phones, etc.

 Don’t spend too much time on any one problem.

 You have about 120 minutes for the exam.

 There are 9 pages including this one.

 Be sure to show work and explain what you’ve done when asked to do so.

 The last page has two “answer areas” for the last question. Clearly mark which one

you want graded or we will grade the first one.

 2/8

1. Fill-in-the-blank or circle the best answer [17 points, -2 per wrong/blank, minimum 0]

a. When using the R10K algorithm, if you have B reorder buffer entries, S reservation

stations, and A architected registers you can be sure that you will not have a use for

more than B+S / B+A / A+S physical registers.

b. In the P6 scheme an instruction might find its data in one of three places. Those

three places are __ARF______, ______CDB_______, or _____ROB____. In the

R10K scheme there are two / three / four places an instruction might find its data.

c. Given an 8-KB four-way associative cache with 16-byte cache lines and a 32-bit

address space there will be __7___ bits used for the index. If that same cache were

fully-associative you’d need ___0____ bits to be used for the index.

d. The BTB generally does a poor job with predicting the target address of a function

call / function return / PC-relative branch.

e. A cylindrical metal wire which is 1mm long and has a diameter of 10nm will have

the higher / lower / the same resistance as a wire made of the same material

which is 2mm long and has a diameter of 20nm.

f. Adding more reservation stations will reduce the amount of time that the

processor stalls due to structural hazards / data hazards / control hazards but

may decrease the number of branch delay slots / clock period / clock frequency.

g. In the R10K scheme, if you have 32 RoB entries, 16 architected registers, 6

reservation stations and 48 PRFs, you should never have a structural hazard

due to the lack of a PRF entry / reservation station / RoB entry / floating point

divide.

 3/8

2. Consider the pipelined processor you did as part of project 3 (including the structural

hazard). Say 20% of all instructions were loads, 25% were branches, and 10% were stores

and that the program was quite long (millions and millions of instructions). 20% of all

instructions are data dependent on the instruction in front of them, and branches are taken

60% of the time. What would you expect the CPI to be? Show your work. [6 points]

1+dependent load stalls+structural stalls+control hazards

Dependent Load stalls=(.2)(1)(.2)

Structural hazard stalls =.3(1)

Control hazards = .25 * .6 (3)

 CPI is then 1.79

3. Answer each of the following questions in 40 words or less. [11 points]

a. Why don’t we let stores write to memory as soon as their address and data are

known? [3]

Because we don’t want to modify architectural state speculatively.

b. In the P6 scheme, under what circumstances does a committing instruction update

the RAT? Be precise and be sure to consider all types of instructions. [4]

 When an instruction that wrote an architected register commits and the

RAT points to its ROB entry.

 When a mispredicted branch commits

 4/8

4. Consider a set of code where there are three classes of instructions.

 “Short” instructions are not dependent on any other instruction and can execute in 4

cycles.

 “Long” instructions are not dependent on any other instruction and can execute in 50

cycles.

 “Dependent” instructions are (only) dependent on the instruction in front of them and

take 4 cycles to execute.

Say you have a machine which can issue one instruction per cycle, finish execution of one

instruction per cycle, and retire one instruction per cycle. This machine implements what we

have called the “P6” algorithm and it keeps an instruction in its RS until that instruction has

finished executing. The machine has an RS size of 12 and a RoB size of 64 unless otherwise

noted. You may assume the machine otherwise has unlimited resources (execution units etc.)

You must show/explain your work to get credit!

[12 points]

a. What is the best CPI this machine could achieve if the program being run consisted of only

“long” instructions? [3]

50/12 =4.1667.

b. What is the best CPI this machine could achieve if the program being run consisted of only

“short” instructions? [3]

1

c. What is the best CPI this machine could achieve if the program being run consisted of only

“dependent” instructions? [3]

4

d. What is the best CPI this machine could achieve if the program being run consisted of

groups of 50 instructions, where the first 49 were “dependent” and the last was “short”?

Assume there are a large number of these groups. [3]

(50*4-11*4)/50 = 39*4/50=3.121

 5/8

5. Consider the following pseudo-assembly code:

 r2=0

 r4=0

 r5=0

 bob: r3=(r2 mod 3) // remainder when r2 is divided by 3

 if(r3==0) goto next // Branch 1

 r6=r6+1

next: r5=r5+4

 r2=MEM[r5+0] // Load

 if(r6<1000000) goto bob // Branch 2

“bob” has an address of 0x1000. The predictors all use the least significant bits of the PC other

than the word-offset. Predictors are all initialized to “0” or “00” which is “not-taken” and

“strongly not-taken” respectively. Global history is initialized as if all branches had been not

taken.

You are to consider how different branch predictors will behave on this code under different

circumstances.

 Case 1: The data from the load will be “1” the first time, “2” the second, “3” the third

etc.

 Case 2: The data random. That is it could be any value that fits in a 32-bit integer

with equal probability.

You are now to consider 3 branch predictors:

 Predictor 1: A bimodal predictor with 4 entries each a 2-bit saturating counter.

 Predictor 2: A bimodal predictor with 8 entries each 1 bit.

 Predictor 3: A Gshare predictor with 4 entries each 1 bit.

What are the expected mispredict rates for each of the following? You only need to worry about

steady state values (assume 1000000 is a really big number.)

[15 points, -1.5 per wrong or blank box, min 0]

 Case 1 Case 2

Branch 1 Branch 2 Branch 1 Branch 2

Predictor 1
2/3

0 2/3 0

Predictor 2
2/3

0 4/9 0

Predictor 3
1

1/3 14/27 2/9

 6/8

6. The graph to the right comes from the

“Combining Branch Predictors” paper

that was assigned as a reading for the

course. In your own words, describe

what “best” means in the context of

both gselect-best and gshare-best.

[7 points]

a. “gselect-best” [3]

For gselect you need to choose how many bits to use from the PC and how many from the

global history. Gselect-best is the result for whatever choice maximizes performance.

b. “gshare-best” [4]

In this case we may choose to not use all the global history bits. Gshare-best is the result of

using as few or many of those bits as to maximize performance.

 7/8

7. MOV instructions in modern x86 architectures can often be implemented without actually

writing the value from one register to another. Instead, the Map Table simply renames the

architectural register of the destination to the same physical register as the source at dispatch.

This is often called Move Elimination. Move Elimination effectively takes the MOV

instruction out of the execution pipeline as it doesn’t need to be issued. For this question,

assume you are implementing this feature on top of an R10k microarchitecture. [13 points]

a. Name one advantage to this technique other than speeding up the MOV instruction.

[2]

 Doesn’t require an RS.

 Lower power (less copies)

 Less on the CDB

b. Does the MOV instruction need to broadcast on the CDB? Why or why not? [5]

No need to broadcast because MOV is always resolved before the dependent instructions.

Only the instruction that handles the source register will have to broadcast.

c. Consider the following code running on a processor where Move Elimination has

been implemented. When can you free the physical register that is assigned to $r0 in

the first instruction? Explain your answer. [6]

ADD $r4 $r2 $r0 //r0 = r4 + r2

MOV $r0 $r1 //r1 = r0

MOV $r1 $r13 //r13 = r1

ADD $r9 $r1 $r1 //r1 = r9 + r1

ADD $r6 $r0 $r0 //r0 = r6 + r0

MUL $r13 $r3 $r7 //r7 = r13 * r3

ADD $r0 $r1 $r13 //r13 = r0 + r1

ADD $r0 $r13 $r1 //r1 = r0 + r13

MUL $r7 $r1 $r0 //r0 = r7 * r1

When ADD $r0 $r1 $r13 retires, because all architected registers that are dependent on

the initial mapping of $r0 in the first instruction have been overwritten so the value is no

longer needed..

 8/8

8. Consider the following state of a machine implementing what we’ve called Tomasulo’s third

algorithm. [19 points]

RAT ROB
Arch

Reg #

Phy.

Reg #

 Buffer

Number

PC Executed? Dest

ARN

Dest.

PRN

Replaced

Phy. Reg#

(Back pointer)

0 7 0 12 N 0 0 1

1 6 1 16 Y 1 6 2

2 3 11 2 20 N 0 7 0

3 4 3 24 Y -- -- --

4 9 8 5 4 80 N 4 8 5

 5 84 Y 4 9 8

 6 28 N 2 12 3

 7 32 N 2 11 12

 8

RS PRF
RS# Op

Type

Op1

Ready?

Op1

PRN/value

Op2

Ready?

Op2

PRN/value

Dest

PRN

ROB Phy

Reg

Value Free Valid

0 Add Y -1 Y 2 0 0 0 1 1 N Y N Y N

1 Mult N 7 Y 4 8 4 1 2 N Y Y N

2 Add N 0 Y 2 7 2 2 -1 N Y Y N

3 Add Y 3 Y 6 12 6 3 4 N Y

4 Add Y 6 N 12 11 7 k4 5 N Y

 5 6 N Y

 6 20 N Y

 7 8 3 N N Y

 8 9 N Y N

 9 10 N Y Y N

 10 11 Y N

 11 12 Y N N

 12 13 Y N N

a. Say that the instruction in ROB #3 is a branch and it was mis-predicted: the next PC should have

been 28. Say that the instruction in memory location 28 is R2=R0+R4 and in 32 is R2=R4+R2.

Update the machine to the state where the branch has left the RoB, and the instructions at

memory locations 28 and 32 have dispatched but not executed. When allocating a new PRF

entry, pick the highest number available. Otherwise, when faced with an arbitrary decision, just

be sure to make a legal choice. [16]

b. What was the assembly instruction that is found at memory location 80? Your answer should be

of the form:“r1=r2+r3” or something similar. Your answer may not include an immediate. [3]

R4=R0*R2

On the following page is an extra copy of this state. You may use this one or the one on the next page but

be sure to cross out (with a BIG X) the one you don’t want graded. Also, be sure to answer the following

question.

KEY:

 Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes;

otherwise it is the Physical Register Number that is being waited upon.

 Op2 PRN/value is the same as above but for the second argument.

 Dest. PRN is the destination Physical Register Number.

 Dest. ARN is the destination Architectural Register Number.

 ROB is the associated ROB entry for this instruction.

 Free/Valid indicates if the PRF entry is currently available for allocation

and if the valid in it is valid, No register should be valid and free!

Initial Head=0

Initial Tail=6

Final Head= 6

Final Tail= 8

