
 1/11

1EECS 470 Midterm Exam
Winter 2020

Name: _____________Key_______________________ unique name: _______________

Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so.

Scores:

NOTES:
 Open book and Open notes

 Calculators are allowed, but no PDAs, Portables, Cell phones, etc.

 Don’t spend too much time on any one problem.

 You have about 120 minutes for the exam.

 There are 11 pages including this one.

 Be sure to show work and explain what you’ve done when asked to do so.

 The last page has two “answer areas” for the last question. Clearly mark which one

you want graded or we will grade the first one.

 2/11

1) Fill-in-the-blank or circle the best answer [18 points, -2 per wrong/blank, minimum 0]
a) If, in the algorithm we are calling R10K, the RRAT had only one port for writing values,

you could only have one instruction that writes a register

issue / dispatch / start execution / complete execution / retire per cycle.

b) Adding more reorder buffer entries will reduce the amount of time that the

processor stalls due to structural hazards / data hazards / control hazards but

may decrease the number of branch delay slots / clock period / clock frequency.

c) When using the P6 algorithm, if you have B reorder buffer entries, S reservation stations,

and A architected registers you can expect to have

B*log2(S) / A*log2(B) / (S+A)*log2(B) / (S+B)*log2(A) bits needed in the register alias

table. Don’t include valid bits or other status bits, just the information used to store the

rename location.

d) In the R10K scheme an instruction might get its data from one of two places. Those

two places are the __CDB__________, or the ______PRF________.

e) Given an 32-KB two-way associative cache with 32-byte cache lines and a 64-bit

address space there will be ___9___ bits used for the index. If that same cache were

four-way associative you’d need __8____ bits to be used for the index.

f) Say when using the R10K scheme instruction “A” is a load that misses in the cache and

the next 1000 instructions are “in the shadow” of that load. A structural hazard will

likely occur while A is being executed. That structural hazard will most likely be due to

a lack of enough

Reservation stations / Reorder buffer entries / Physical registers / CDBs.

g) The period of a 4 GHz clock is _____0.25__________ ns.

h) Consider a CMOV instruction which takes 3 register arguments. If all instructions were

32 bits and the architected register file (ARF) had 256 entries, approximately what

percent of all encodings would the CMOV instruction use assuming any register could be

used for any of the three register arguments? 0.02% / 0.4% / 2% / 5% / 50%

 3/11

2) Now you are the compiler [11 points]

Consider the following assembly code
1. R1 = R2 / R3

2. R0 = MEM[R1]

3. R1 = R2 + R3

4. R0 = R0 + R1

5. R1 = MEM[R1]

6. R1 = R0 * R1

7. R4 = R0 + R1

8. MEM[R3] = R2 // a store instruction

a. Assuming parallelism is limited only by true dependencies, what is the ILP available

in this code? Justify your answer by drawing a dependency graph (using the

instruction number to represent the instructions). [4]

1 3 8 ILP=5/8.

2 5

4

6

7

b. Rewrite the assembly to eliminate all false dependencies in the code segment while

maintaining the same behavior. [7]

You must:

 Not reorder, remove, or add instructions (only changing register numbers)

 Be sure that once your code segment ends, the values in registers R0-R4

remain exactly the same as they were after the above segment executed. So if

R0=5 after the above code segment, R0 must still be five after your code

segment finishes. Any memory writes must also be identical.

 Only use registers R0-R8.

1. R5=R2/R3

2. R6=MEM[R5]

3. R7=R2+R3

4. R0=R6+R7

5. R8=MEM[R7]

6. R1=R0*R8

7. R4=R0+R1

8. MEM[R3]=R2

 4/11

3) Short answers [11 points]
In the paper “Combining Branch Predictors,” one of the options considered is something

called “gshare-best”. Say you have a gshare predictor that uses a 2-bit saturating counter and

is 2KB in size.

 How many bits of the global history might be used as part of indexing this predictor?

Provide a range if there is more than one possible answer. [2]

0 to 13

 How many bits of the PC might be used as part of indexing this predictor? Provide a

range if there is more than one possible answer. [2]

13

 Given the graph to the right,

what indexing option can you

be certain gshare-best did not

actual utilize? Briefly

explain. [2]

More than 0 bits of global

history are used, otherwise

the result for gshare-best at

2KB would be the same as

bimodal.

 5/11

4) More short answer [12 points]

a) Provide a taken/not-taken pattern consisting of exactly 3 branches where a 2-bit

saturating up-down predictor will do better than a 1-bit predictor. Assume the 2-bit starts

as weakly not-taken and the 1-bit starts as not-taken. Your answer should be of the form

(T, NT, T). [4]

NT, T, NT

b) In the P6 scheme, when a mispredicted branch at the head of the ROB commits, what

changes are made to the following structures, if any? [3]

 ARF

None

 RAT

Clear it (so everything points to the appropriate ARF value)

c) In the P6 scheme, when an instruction commits, what changes are made to the following

structures, if any? If updates are conditional, make that clear. Assume the committing

instruction is not a mispredicted branch. [5]

 RS

None.

 RAT

If the committing instruction is in RoB entry X and modifies architected register Y,

then if RAT[Y]==X, clear RAT[Y]. Otherwise do nothing.

 ARF

Copy the RoB’s result value into the appropriate ARF.

 6/11

5) Tournament of champions [12 points]

Consider a variant of the tournament branch predictor used in class.

 The BHT is indexed with 10 bits of the PC

 The local PHT is indexed by 8 bits and uses a standard 4-state state machine.

 The Global history register is 8 bits.

 The tournament selector is indexed with 8 bits of the address and is a 2-state state

machine.

a) What is the size of the BHT, in bits? [2]

210*8=213

b) What is the size of the local PHT, in bits? [2]

28*2=29

c) Say a given conditional branch was predicted by this predictor and was actually taken.

 Under what circumstances, if any, would it be possible that none of the structures

(BHT, local PHT, Global history register, global PHT, tournament selector) would

need to be updated? Be specific. [4]

Assume for the BHT and GHR that “taken” is indicated by a 1.

 BHT is all 1s (all branches taken)

 Local PHT entry (indexed by 11111111) is strongly taken

 GHR is all 1s (all branches taken)

 Global PHT entry (indexed by 11111111) is strongly taken.

 Local and global predictor made the same prediction (which they would have

in this case)

 Under what circumstances, if any, would it be possible that tournament selector

would get updated but none of the other structures (BHT, local PHT, Global history

register, global PHT) would need to be updated? Be specific. [4]

As noted above, the only way none of the other structures would be updated leads

both predictors to predict “taken”. So the tournament predictor wouldn’t update as

the local and global predictors agree. So this is impossible.

 7/11

6) On ISAs and microarchitecture [8 points]

Branches with “branch delay slots” (also called “delayed branches”) were added as a feature

when in-order pipelined architectures were a common microarchitecture. [8 points]

a) Explain how having a “delayed branch” instruction helped with performance on an in-

order pipeline. Your answer must be 40 words or less. [3]

Because the instruction(s) after the branch is always executed, on a mispredict there are

fewer instructions that need to be squashed.

b) What changes would you have to make to the R10K microarchitecture to support a

“delayed branch” instruction (in addition to a normal branch)? Be specific. [5]

You would need to put the instruction after the branch into the machine (fetch, dispatch,

etc.) even if the branch is predicted taken. Further, when a branch is predicted not-taken

but that is a mis-prediction, you would have to not squash when the branch hit the head of

the ROB, but instead when the delayed instruction(s) were at that head of the ROB.

There are a few other ways of dealing with this (selective squashing of all instructions

other than the delayed instructions for example) but a correct answer should address both

what happens on a branch predicted to be taken (delayed instructions need to be executed

and committed) and how to handle a branch predicted as not-taken that is actually taken

(those delayed instructions need to be executed, ideally without re-fetching them).

c) Consider the pipelined processor you did as part of project 3 (including the structural

hazard). Say 25% of all instructions were loads, 10% were branches, and 10% were

stores and that the program was quite long (millions and millions of instructions). 20%

of all instructions are data dependent on the instruction in front of them, and branches are

taken 60% of the time. What would you expect the CPI to be? Show your work and put

your final answer in a box. [5]

CPI=1+structural hazards + control hazards + data hazards

CPI=1+0.35+(0.1)(0.6)(3)+(0.25)(0.2)(1)=1.58

 8/11

7) Modulo by observation—SystemVerilog problem [10 points]
You are to design SystemVerilog module that has a 32-bit shift register. The module has the

following one-bit inputs each sampled on the rising edge of clock: reset, enable, and

serial_in. If reset is a 1, the 32-bit shift register is cleared (set to 0). If reset is 0 and enable

is 1, then the bits will be shifted to the left, with the shift-in value placed in the least-

significant bit of the shift register. If reset is 0 and enable is 0, the shift register will hold its

value.

The module output is a one-bit value which is a “1” if the shift register has a value that is a

multiple of 5.

An example is show below.

reset enable serial_in Sequence Value

in shift

register

Is a

multiple

of five?

1 0 x

32’d0 1

0 1 1 1 1 0

0 1 0 10 2 0

0 1 1 101 5 1

0 1 0 1010 10 1

0 1 1 10101 21 0

0 0 X 10101 21 0

On the next page, complete the SystemVerilog that would generate the correct output as

described above. You should have the correct syntax but not be overly concerned by it. Style

will be a factor. You may not use / or % in your solution.

 9/11

typedef enum logic [2:0] {ZERO, ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN}
remainder_state;

module serial_mult_of_five_display(
 input clock,
 input reset,
 input enable,
 input serial_in,
 output div_by_five
);

logic [31:0] shift_val, n_shift_val;
remainder_state state, n_state;

assign div_by_five = state == ZERO;
assign n_shift_val = enable ? {shift_val[30:0], serial_in} : shift_val;

always_comb begin
 case(state)
 ZERO: n_state = serial_in && shift_val[31] ? ZERO :
 serial_in ? ONE :
 shift_val[31] ? FOUR : ZERO;
 ONE: n_state = serial_in && shift_val[31] ? TWO :
 serial_in ? THREE :
 shift_val[31] ? ONE : TWO;
 TWO: n_state = serial_in && shift_val[31] ? FOUR :
 serial_in ? ZERO :
 shift_val[31] ? THREE : FOUR;
 THREE: n_state = serial_in && shift_val[31] ? ONE :
 serial_in ? TWO :
 shift_val[31] ? ZERO : ONE;
 FOUR: n_state = serial_in && shift_val[31] ? TWO :
 serial_in ? FOUR :
 shift_val[31] ? TWO : THREE;
 default: n_state = state;
 endcase
end
always_ff @(posedge clock) begin
 if (reset) begin
 state <= ZERO;
 shift_val <= 32'h0;
 end
 else begin
 state <= n_state;
 shift_val <= n_shift_val;
 end
end

endmodule

 10/11

8) That last question [18 points]

Consider the following state of a machine implementing what we’ve called the R10K

algorithm with a retirement RAT.

RAT ROB RRAT
Arch

Reg #

Phy.

Reg #

 Buffer

Number

PC Executed? Dest.

PRN

Dest

ARN

 Arch

Reg

Phy.

Reg #

0 2 0 12 N 7 3 0 2

1 9 8 1 16 N 8 1 1 3 8

2 4 1 2 20 Y 12 3 2 4

3 12 3 24 Y -- -- 3 5 12

4 10 6 4 28 Y 9 1 4 6

 5 32 N 10 4

 6 60 N 0 2 HEAD

 7 64 N 1 2

 8 TAIL

RS PRF
RS# Op

Type
Op1
Ready?

Op1
PRN/value

Op2
Ready?

Op2
PRN/value

Dest
PRN

ROB Phy

Reg

Value Free Valid

0 + N 7 Y 1 8 1 0 3 Y N N

1 * Y 2 Y -1 7 0 1 3 Y N N

2 + Y 1 Y 1 10 5 2 1 N Y

3 + Y -1 Y -2 0 6 3 2 N Y Y N

4 + N 0 Y -1 1 7 4 0 N Y

 5 -1 N Y Y N

 6 -2 N Y

 7 6 N Y N

 8 6 N N Y

 9 1 N Y Y N

 10 9 N Y N

 11 9 Y N

 12 0 N Y

Say that the instruction in ROB #3 is a branch and it was mis-predicted: the next PC should have

been 60. Say that the instruction in memory location 60 is R2=R1+R4 and in 64 is R2=R2+R1.

Update the machine to the state where the branch has left the RoB, and the instructions at

memory 60 and 64 have dispatched but not started execution. When selecting a PRF use the

lowest numbered physical register available, otherwise when making an arbitrary decision, just

be sure it is legal. Be sure to update the head and tail pointers!

On the following page is an extra copy of this state. You may use this one or the

one on the next page but be sure to cross out (with a BIG X) the one you don’t

want graded.

KEY:
 Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes;

otherwise it is the Physical Register Number that is being waited upon.

 Op2 PRN/value is the same as above but for the second argument.

 Dest. PRN is the destination Physical Register Number.

 Dest. ARN is the destination Architectural Register Number.

 ROB is the associated ROB entry for this instruction.

 Free/Valid indicates if the PRF entry is currently available for allocation

and if the valid in it is valid. A free entry must be marked as invalid.

 11/11

This is a copy of the previous state. You may use this one or the previous one but

be sure to cross out (with a BIG X) the one you don’t want graded.

RAT ROB RRAT
Arch

Reg #

Phy.

Reg #

 Buffer

Number

PC Executed? Dest.

PRN

Dest

ARN

 Arch

Reg

Phy.

Reg #

0 2 0 12 N 7 3 HEAD 0 2

1 9 1 16 N 8 1 1 3

2 4 2 20 Y 12 3 2 4

3 12 3 24 Y -- -- 3 5

4 10 4 28 Y 9 1 4 6

 5 32 N 10 4

 6 TAIL

 7

 8

RS PRF
RS# Op

Type
Op1
Ready?

Op1
PRN/value

Op2
Ready?

Op2
PRN/value

Dest
PRN

ROB Phy

Reg

Value Free Valid

0 + N 7 Y 1 8 1 0 3 Y N

1 * Y 2 Y -1 7 0 1 3 Y N

2 + Y 1 Y 1 10 5 2 1 N Y

3 3 2 N Y

4 4 0 N Y

 5 -1 N Y

 6 -2 N Y

 7 6 N N

 8 6 N N

 9 1 N Y

 10 9 N N

 11 9 Y N

 12 0 N Y

Say that the instruction in ROB #3 is a branch and it was mis-predicted: the next PC should have

been 60. Say that the instruction in memory location 60 is R2=R1+R4 and in 64 is R2=R2+R1.

Update the machine to the state where the branch has left the RoB, and the instructions at

memory 60 and 64 have dispatched but not started execution. When selecting a PRF use the

lowest numbered physical register available, otherwise when making an arbitrary decision, just

be sure it is legal. Be sure to update the head and tail pointers!

KEY:
 Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes;

otherwise it is the Physical Register Number that is being waited upon.

 Op2 PRN/value is the same as above but for the second argument.

 Dest. PRN is the destination Physical Register Number.

 Dest. ARN is the destination Architectural Register Number.

 ROB is the associated ROB entry for this instruction.

 Free/Valid indicates if the PRF entry is currently available for allocation

and if the valid in it is valid. A free entry must be marked as invalid.

