
Page 1 of 10

EECS 470 Final Exam
Winter 2015

Name: ____________________________________ unique name: _______________

Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so.

Scores:

Page # Points

2 /8

3 /18

4 /13

5 /15

6 /12

7 /12

8 /7

9&10 /15

Total /100

NOTES:

 Open White book and EABI only.

 There are 10 pages including this one.

 Calculators are allowed, but no PDAs, Portables, Cell phones, etc.

 Don’t spend too much time on any one problem.

 You have about 120 minutes for the exam.

 Be sure to show work and explain what you’ve done when asked to do so. Getting partial

credit without showing work will be rare.

Page 2 of 10

1) Multiple choice/fill-in-the-blank. Pick the best answer.

[8 points, -2 per wrong/blank answer, min 0]

a) In a hash cache and skew cache we use some hashing function to determine the index to use

when access the cache. Those accesses typically use an XOR. Why don’t we generally use

some other gate such as a NAND?

 Because the XOR gate is typically faster than a NAND gate.

 Because a NAND gate would make some sets more likely to be accessed than others.

 Because the XOR gate typically uses less power than a NAND gate.

 It’s just what people typically use—either XOR or NAND should work equally well.

b) Say you have a single application on an embedded system that runs every second for 0.9 seconds

and is otherwise idle. Assuming it’s an option, to best reduce power you should

 Turn the processor off (or nearly off) for the 0.1s when idle

 Scale the voltage and frequency down to about 0.9 times what it is.

 Scale the voltage and frequency down to about 0.729 times what it is.

 Scale the current down to about 0.729 times what it is.

c) You would expect a direct-mapped 128-byte cache with 32-byte cache lines to get a hit about

_________% of the time on a memory access with a stack distance of 2.

d) The BTB / gshare / RAS / tournament predictor has problems correctly predicting the address of

load / store / call / return instructions.

Page 3 of 10

2) Caches and virtual memory [18 points, 6 points each]

a) Consider the following C-code segment:

int X[4096]; // each element is 4 bytes in size

for(i=0;i<10000000;i++)

for(j=0;j<A;j=j+B)

 X[j]++;

Assume that all values other than the data in array “X” are kept in registers during this loop. For

this code, what would be the expected hit-rate for the various values of A and B if the data cache

were 4 KB with 32-byte lines and was two-way associative?

[-2 per wrong/blank box, min 0]

 B=2 B=6

A=2048

A=1024

b) Consider a memory system with 32 KB pages where the virtual memory size is 4 GB and

physical memory addresses are 40 bits. If you have a 32-entry fully-associative TLB, how many

bits are:

 Used for the entire TLB tag store (just the tags, not status bits)? [3]

 Used for the entire TLB “data” store? [3]

c) Say you are working on a processor that has a 256 KB write-back data cache with 32-byte cache

lines that is virtually addressed. In order to avoid problems associated with a virtually addressed

cache, you have proposed invalidating the cache on every context switch. Clearly that will make

the next process run slower for a while as the cache warms up. But your boss is worried it might

make even very short high-priority context switches (a dozen instructions say which need to be

done quickly) be very slow in the worst case (more than just due to cache misses!). Why could

that happen?

Page 4 of 10

3) Power [7 points]

a) If we had a processor that used 200W and ran at 2GIPS about what performance and power

consumption would you expect if we moved the voltage and frequency up by 4%? [4, 2 each]

Power: _________________W

Performance: _________________ GIPS

b) Consider an ALU and a cache both of which draw 2 Watts of power. If you scale the frequency

and voltage up by 5%, which of the two devices would be likely to draw more power? Explain

your answer. [3]

4) An academic paper entitled “Exploring Efficient SMT Branch Predictor Design” concluded that:

“… branch prediction accuracy is less important in an SMT system than in a traditional
superscalar processor. Misprediction ratios that increased by factors of two or three only
caused slowdowns of as little as 2%.”

If a single-thread running on the same processor would see a slowdown of 30%+ given the same

misprediction rates on the same benchmarks, what could explain why the multi-threaded

applications were largely unaffected by the very poor misprediction rates? [6 points]

Page 5 of 10

5) You work at “Cool Computers Inc” and have been tasked with evaluating replacements for your

company’s current 4 KB direct-mapped VIPT L1 data cache. The virtual memory system you use

has 32-bit physical and virtual addresses and uses a 4 KB page size. Assuming you must stay with

the same virtual memory system and continue to use a VIPT cache, label each of the following

options as being “viable” or “non-viable”. For those you label as non-viable, provide a brief

explanation as to why it isn’t viable. [8 points, 2 each]

a) 4-way associative 16KB cache.

b) 2-way associative 4KB cache.

c) Direct-mapped 4KB hash cache.

d) Direct-mapped 8KB cache.

6) You’ve been working on a high-end embedded-systems design (1GHz processor, 1GB memory).

During development the data cache has been kept turned off (to ease debugging). When the cache is

turned on, you find that performance drops by a factor of 3. You know that the cache works

correctly and greatly improves performance of other applications running on the same system. You

know that you’ve not made any fundamental error. Why can adding a data cache slow down an

application by this much? Your solution must be reasonable given the scenario provided. [7 points]

Page 6 of 10

7) Write a Verilog module to arbitrate the output of three functional units to two CDB buses. If a

functional unit requests a CDB but none is available then, and only then, you should stall it. Your

code must be synthesizeable. You may pick any prioritization that you wish but if two or more

functional units want to use the CDB, at least 2 must be able to. [12 points]

module cdb_arb (

 input logic [2:0] fu_request_i, //Functional unit x wants CDB

 input logic [2:0] [4:0] fu_prf_i, //Which PRF entry unit x has

 //as its destination

 input logic [2:0] [63:0] fu_data_i, //FU x’s result.

 output logic [1:0] cdb_valid_o, //Data on CDB x is valid

 output logic [1:0] [4:0] cdb_prf_o, //CDB y’s dest. PR entry.

 output logic [1:0] [63:0] cdb_data_o, //CDB y’s result.

 output logic [2:0] fu_stall_o) //Stall the functional unit

 //if it didn't get the CDB

 //the cycle

Page 7 of 10

8) Consider a processor that is part of a multi-processor system. Its instruction and data caches are

each 16 KB direct-mapped caches with 32-byte cache lines. The data cache is write-back, the

instruction cache is write-through. It supports the MESI protocol as described in class. The word

size (for instructions and data) is 4 bytes.

Now say you have a program running on that processor. All you know about the program is that it

performs 100,000 loads, 20,000 stores and fetches 400,000 instructions (5,000 of which are unique).

Answer the following questions. Show your work. [12 points]

a) Assuming both caches start with all lines marked invalid and all other processors are idle, what is

the smallest number of read lines (BRLs) that could generated when this program runs? [4]

b) Assuming both caches start with (potentially useful) instructions/data and all other processors are

idle, what is the smallest number of read lines (BRLs) that could generated when this program

runs? [4]

c) Assuming both caches start with (potentially useful) instructions/data and all other processors are

idle, what is the largest number of bus transactions that could generated when this program runs?

[4]

Page 8 of 10

9) Bus vs. directory-based systems. [7 points]

a) Say we have 4 processors each of which has a 1MB private writeback L1 cache with 64-byte

cache blocks. The main memory size is 4GB (total) and the system uses the MESI coherence

protocol as described in class. How many state-bits do we need to maintain the coherence

protocol? Where do those state-bits reside? Show your work and ignore any transient states. [4]

b) Now say we are using a directory-based system rather than a bus-based one with the same caches

as above. Each of the 4 processors has 1GB of memory (so still 4GB total and the system uses

the MESI coherence protocol as described in class. How many state-bits do we need to maintain

the coherence protocol? Where do those state-bits reside? Show your work and ignore any

transient states (This problem is quite hard). [3]

Page 9 of 10

10) Consider the state of a machine implementing the R10K scheme with an RRAT. [15 points]

RAT ROB RRAT

Arch

Reg #

Phy.

Reg #

 Buffer

Number

PC Executed? Dest.

PRN

Dest

ARN

 Arch

Reg

Phy.

Reg #

0 12 0 60 N 0 1 HEAD 0 12

1 4 1 64 N 1 2 1 11

2 1 2 66 Y 2 1 2 10

3 3 3 70 Y -- -- 3 9

4 8 4 74 N 4 1 4 8

 5 78 Y 3 3

 6 TAIL

 7

 8

RS PRF

RS# Op

Type

Op1

Ready?

Op1

PRN/value

Op2

Ready?

Op2

PRN/value

Dest

PRN

ROB Phy

Reg

Value Free Valid

0 + N 1 N 1 4 4 0 1 N N

1 * Y 10 Y 10 0 0 1 2 N N

2 + N 0 Y 10 1 1 2 20 N Y

3 3 18 N Y

4 4 5 N N

 5 6 Y N

 6 7 Y N

 7 8 Y N

 8 9 N Y

 9 10 N Y

 10 11 N Y

 11 44 N Y

 12 13 N Y

Say that the instruction in ROB #3 is a branch and it was mis-predicted: the next PC should have been

100. Now, say that the instruction in memory location 100 is R1=R2+R1, that in location 104 is

R4=R1*R3, and 108 is R3=R4+R2. Update the machine to the state where the branch has left the RoB,

and the instruction at location 100 has committed, the instruction at 104 has dispatched but not sent to a

functional unit yet, and the instruction at 108 has gone as far as it can given the state of the other

instructions. When selecting a PRF to use, select the lowest numbered one that is free. Be sure to

update the head and tail pointers!

You may use this one or the one on the next page but be sure to cross out (with a BIG X) the one you

don’t want graded.

KEY:

 Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes;

otherwise it is the Physical Register Number that is being waited upon.

 Op2 PRN/value is the same as above but for the second argument.

 Dest. PRN is the destination Physical Register Number.

 Dest. ARN is the destination Architectural Register Number.

 ROB is the associated ROB entry for this instruction.

 Free/Valid indicates if the PRF entry is currently available for allocation and

if the valid in it is valid. A free entry should be marked as invalid.

Page 10 of 10

(This is a copy of the previous page)

RAT ROB RRAT

Arch

Reg #

Phy.

Reg #

 Buffer

Number

PC Executed? Dest.

PRN

Dest

ARN

 Arch

Reg

Phy.

Reg #

0 12 0 60 N 0 1 HEAD 0 12

1 4 1 64 N 1 2 1 11

2 1 2 66 Y 2 1 2 10

3 3 3 70 Y -- -- 3 9

4 8 4 74 N 4 1 4 8

 5 78 Y 3 3

 6 TAIL

 7

 8

RS PRF

RS# Op

Type

Op1

Ready?

Op1

PRN/value

Op2

Ready?

Op2

PRN/value

Dest

PRN

ROB Phy

Reg

Value Free Valid

0 + N 1 N 1 4 4 0 1 N N

1 * Y 10 Y 10 0 0 1 2 N N

2 + N 0 Y 10 1 1 2 20 N Y

3 3 18 N Y

4 4 5 N N

 5 6 Y N

 6 7 Y N

 7 8 Y N

 8 9 N Y

 9 10 N Y

 10 11 N Y

 11 44 N Y

 12 13 N Y

Say that the instruction in ROB #3 is a branch and it was mis-predicted: the next PC should have been

100. Now, say that the instruction in memory location 100 is R1=R2+R1, that in location 104 is

R4=R1*R3, and 108 is R3=R4+R2. Update the machine to the state where the branch has left the RoB,

and the instruction at location 100 has committed, the instruction at 104 has dispatched but not sent to a

functional unit yet, and the instruction at 108 has gone as far as it can given the state of the other

instructions. When selecting a PRF to use, select the lowest numbered one that is free. Be sure to

update the head and tail pointers!

You may use this one or the one on the previous page but be sure to cross out (with a BIG X) the one

you don’t want graded.

KEY:

 Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes;

otherwise it is the Physical Register Number that is being waited upon.

 Op2 PRN/value is the same as above but for the second argument.

 Dest. PRN is the destination Physical Register Number.

 Dest. ARN is the destination Architectural Register Number.

 ROB is the associated ROB entry for this instruction.

 Free/Valid indicates if the PRF entry is currently available for allocation and

if the valid in it is valid. A free entry should be marked as invalid.

