
Page 1 of 10

EECS 470 Final Exam

Winter 2018

Name: ____________________________________ unique name: _______________

Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so.

Scores:

NOTES:

 Open book and Open notes

 Calculators are allowed, but no PDAs, Portables, Cell phones, etc.

 Don’t spend too much time on any one problem.

 You have about 120 minutes for the exam.

 There are 10 pages including this one.

 Do not write on the back of any pages.

 Be sure to show work and explain what you’ve done when asked to do so.

 The last page has two “answer areas” for the last question. Clearly mark which one you want
graded or we will grade the first one.

Page 2 of 10

1. Multiple choice questions
Fill-in-the-blank or circle the best answer. Circle the best answer.

[12 points, -2 per wrong/blank, minimum 0]

a. For a high degree of sequential data accesses, what would you choose for a higher hit rate, given a

fixed size cache?

Small block size Large block size It makes no difference

b. For random data accesses, what would you choose for a higher hit rate, given a fixed size cache?

Small block size Large block size It makes no difference

c. You have a program that runs for 10 seconds. The processor uses 100 Watts during that time. If we

drop program’s run time to 8 seconds, about what would you expect the power used to become?

Assume a cubic relationship between power and performance.

50 Watts 70 Watts 90 Watts 130 Watts 160 Watts 200 Watts

d. In the MESI protocol as taught in class, which of the following transitions might happen for a given

address without the address of the block in question being on the bus as a result or cause of this

transition?

S M M I S E E M ES

e. You would expect a 1024 byte fully-associative cache with a block size of 32 bytes to get about what

hit rate on a memory access with a stack distance of 10?

0% 12% 40% 74% 92% 100%

f. In the R10K scheme, if you have a ROB size of 48, RS size of 8, and ARF size of 32, what is the

maximum number of PRF entries you would expect to have?

40 48 50 56 70 80

g. Assume a memory access to main memory on a cache miss takes 20 ns and a memory access to the

cache on a cache hit takes 2 ns. If 75% of the processor’s memory requests result in a cache hit,

about what is the average memory access time?

22ns 18ns 16ns 10ns 6ns 2ns

h. If you have a 2 KB, two-way associative cache with 32-byte lines on a computer with a 20-bit address

space, you would need about how many bits to store all the tags in the cache?

 640 1024 2048 6400 20,480 21,480

Page 3 of 10

2. Predicated instructions
The ARMv7 and IA64 instruction set architectures both use predicated instructions. That is, instructions

such as:

(p1) DADD R1,R2,R3 ; if (p1) then R1=R2+R3

Answer the following questions about predicated instructions (continued on the next page). [16 points]

a) What is the primary advantage of a predicated instruction set? Give an assembly example of

when it can be useful compared to a non-predicated instruction and explain why it’s useful. [5]

b) What is the primary disadvantage of a predicted instruction set? Use an example to illustrate

your point. [4]

c) While most ISAs don’t have predicated instructions, most do support some type of CMOV

instruction. Explain how CMOV gets some of the benefits of predicated instructions while

greatly reducing the disadvantages. [4]

Page 4 of 10

d) Give an example of where a predicated instruction could be easily used, but where replacing it

with a CMOV would be a poor idea. Briefly explain why it would be hard to replace. [3]

3. Stack it up.
Write a Verilog module that implements a 4 entry stack. A stack is a Last-In First-Out buffer that outputs
the latest value written (pushed) into it. The stack should also support a pop function, such that upon a
pop the last entry written will be cleared in the next cycle. A pop will not affect the output of the stack
in the same cycle (the stack will always output the top of stack). You may assume that a pop will never
happen when the stack is empty, a push will never happen when the stack is full, and a push and a pop
will never happen in the same cycle. For full credit, your code must be synthesizable and reasonably
efficient. Put your answer on the next page. [16 points]

module Stack (
 input clock, reset,

input [31:0] data_i, // data to push if any
input valid_i, // we are pushing data
input pop, // remove top of stack
output logic data_valid_o, // the stack isn’t empty
output logic [31:0] data_o // data at the top of stack if any

);
 logic [3:0][31:0] stack, next_stack;
 logic [3:0] valid, next_valid;
 logic [1:0] stack_ptr, next_stack_ptr;

////////////////ANSWER BEGIN

////////////////ANSWER END

always_ff @(posedge clock) begin

 if (reset) begin

 stack <= 0;

 valid <= 0;

 stack_ptr <= 0;

 end else begin

 stack <= next_stack;

stack_ptr <= next_stack_ptr;

 valid <= next_valid;

 end

end

endmodule

Page 5 of 10

////////////////ANSWER END

always_ff @(posedge clock) begin

 if (reset) begin

 stack <= 0;

 valid <= 0;

 stack_ptr <= 0;

 end else begin

 stack <= next_stack;

stack_ptr <= next_stack_ptr;

 valid <= next_valid;

 end

end

endmodule

module Stack (
 input clock, reset,

input [31:0] data_i, // data to push if any
input valid_i, // we are pushing data
input pop, // remove top of stack
output logic data_valid_o, // the stack isn’t empty
output logic [31:0] data_o // data at the top of stack if any

);
 logic [3:0][31:0] stack, next_stack;
 logic [3:0] valid, next_valid;
 logic [1:0] stack_ptr, next_stack_ptr;

////////////////ANSWER BEGIN

Page 6 of 10

4. Cache bandwidth
You are working on a processor capable of using a write-back or write-through scheme. It is always

allocate-on-write. The block size is 64 bytes. All loads and stores are to 8 byte locations. The bus

supports both 8 and 64 byte transactions.

[12 points]

a. If your processor is generating one billion stores a second and the cache has a hit rate of X on

stores, what is the write bandwidth (in bytes/second) you would expect to associated with each

of the two write schemes in steady-state? [6]

Write-through:

Write back:

b. Assuming you are only worried about minimizing write bandwidth (bytes of data written per

second), for what values of X would you be best off using a write-through cache rather than

write-back? Be sure to specify a range. [3]

c. Assuming you are only worried about minimizing the number of writes, for what values of X

would you be best off using a write-through cache rather than write-back? Be sure to specify a

range. Explain your answer. [3]

Aside: sometimes you will be limited by data bandwidth, sometimes by address bandwidth (which is

basically the number of transactions). Depends on your bus and a few other things…

Page 7 of 10

5. A fairly clean MESI problem
Consider a case of having 2 processors using a snoopy MESI protocol where the memories can snarf
data. Both have a 2-line direct-mapped cache with each line consisting of 16 bytes. The caches begin
with all lines marked as invalid. Fill in the following tables indicating:

 If the processor gets a hit or a miss in its cache.

 What bus transaction(s) (if any) the processor performs (BRL, BWL, BRIL, BIL)

 If a HIT or HITM (or nothing) occurs on the bus during snoop.

 For misses only, indicate if the miss is compulsory, capacity, conflict, or coherence. A
coherence miss is one where there would have been a hit, had some other processor not
interfered.

Finally, indicate the state of the processor after all of these memory operations have completed.

The operations occur in the order shown. [15 points, -0.5 per wrong or blank, minimum of 0]

Processor Address Read/Write Cache

Hit/Miss

Bus

transaction(s)

HIT/

HITM

“4C” miss

type (if

any)

1 0x001 Write

1 0x100 Read

1 0x108 Write

1 0x111 Read

1 0x00F Write

2 0x100 Read

2 0x11A Read

2 0x00F Write

1 0x11C Write

1 0x00F Read

Final state:

 Proc 1 Proc 2

 Tag . State Tag . State

Set 0 Set 0

Set 1 Set 1

Page 8 of 10

6. Misc. questions on multi-processor systems
Answer the following questions [14 points]

a. The diagram to the right describes

an example in the context of a

directory-based multi-processor

system. Circle the correct answers

for the following questions. [7]

 Node 1 is initiating a BRL /

BRIL / BWL / BIL bus

transaction

 Node 2 is initiating a BRL /

BRIL / BWL / BIL bus

transaction

 Why does one bus request from Node #2 result in both a “Fill A” and an “Inv Ack A”?

Explain, in your own words, what each of those two arrows are describing.

b. Let’s say that you find that occasionally cosmic rays strike the MESI state storage in your
bus-based coherence modules, causing a state to instantaneously change to another.

Fill in a cell in the table below with a tick () if, for a starting MESI state on the top,
instantaneously changing the state to the state on the left affects neither correctness
nor performance. Fill in a cell in the table with a circle () if correctness is not affected
but performance could be affected by the state change. If correctness may be affected,
fill in a cross (). [7]

 Starting State (Real Status)

 M E S I

En
d

in
g

St
at

e
(C

u
rr

en
t

St
at

u
s)

 M

E

S

I

Page 9 of 10

7. Little boxes
Consider the following tables that represent the state of a processor that implements what we have
called the P6 scheme:

RS
RS# Op type Op1

ready?

Op1

RoB/value

Op2

ready?

Op2

RoB/value

Dest

ROB

0 Add Y 4 Y 5 0

1 Mult N 0 Y 3 1

2

3

4

ARF
Reg# 0 1 2 3 4 5

Value 1 5 4 3 2 1

The instruction at PC 32 is a branch that has been predicted not-taken, but it is actually taken. The
destination of the branch is PC 200, where the following code resides:

R3=R3+R1 // A

R1=R1+R3 // B

R5=R5+R0 // C

R1=R2*R5 // D

Show the state of the above tables if instruction A has retired, instruction B has been issued but has not
finished execution, while C and D have progressed as far along as possible. Be sure to label the head
and tail of the ROB. Please place instruction A in slot 5 of the ROB. When other arbitrary decisions need
to be made, you are to just make them. [15 points]

(A second copy is available on the following page, please cross out the one you don’t want graded!)

RAT ROB
Arch

Reg.

ROB#

(-- if in

ARF)

 Buffer

Number

PC Done

with

EX?

Dest.

Arch

Reg #

Value

0 -- 0 20 N 1 --

1 2 1 24 N 4 --

2 4 2 28 Y 1 6

3 -- 3 32 Y -- --

4 1 4 36 Y 2 8

5 -- 5

 6

 7

 8

Page 10 of 10

(This is a copy of the state shown on the previous page. Please cross out the one you don’t want

graded!)

RS
RS# Op type Op1

ready?

Op1

RoB/value

Op2

ready?

Op2

RoB/value

Dest

ROB

0 Add Y 4 Y 5 0

1 Mult N 0 Y 3 1

2

3

4

ARF
Reg# 0 1 2 3 4 5

Value 1 5 4 3 2 1

The instruction at PC 32 is a branch that has been predicted not-taken, but it is actually taken. The
destination of the branch is PC 200, where the following code resides:

R3=R3+R1 // A

R1=R1+R3 // B

R5=R5+R0 // C

R1=R2*R5 // D

Show the state of the above tables if instruction A has retired, instruction B has been issued but has not

finished execution, while C and D have progressed as far along as possible. Be sure to label the head

and tail of the ROB. Please place instruction A in slot 5 of the ROB. When other arbitrary decisions need

to be made, you are to just make them.

RAT ROB
Arch

Reg.

ROB#

(-- if in

ARF)

 Buffer

Number

PC Done

with

EX?

Dest.

Arch

Reg #

Value

0 -- 0 20 N 1 --

1 2 1 24 N 4 --

2 4 2 28 Y 1 6

3 -- 3 32 Y -- --

4 1 4 36 Y 2 8

5 -- 5

 6

 7

 8

