
EECS 470 Fall 2009 Midterm Page 1/9

EECS 470 Midterm Exam Answers

Fall 2009

Name: ____________________________________ unique name: _______________

 Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so.

Scores:

Points

Page 2 /18

Page 3 /15

Page 4 /8

Page 5 /15

Page 6 /11

Page 7 /13

Page 8 & 9 /20

 Total /100

NOTES:

 Open book and Open notes

 Calculators are allowed, but no PDAs, Portables, Cell phones, etc.

 Don’t spend too much time on any one problem.

 You have about 120 minutes for the exam.

 There are 9 pages including this one.

 Be sure to show work and explain what you’ve done when asked to do so.

 The last page has two “answer areas”. Clearly mark which one you want graded or we will

grade the first one.

EECS 470 Fall 2009 Midterm Page 2/9

1. Multiple choice/fill in the blank. Select the best answer.

[18 points, -2 per wrong or blank answer, minimum 0]

a. In the algorithm we are calling T3, when using an RRAT we will free all PRF entries

/ no PRF entries / those PRF entries which aren’t pointed to by the RRAT

/ those PRF entries in the RAT that are overwritten by the RRAT when a branch

mispredict occurs.

b. If, in the algorithm we are calling T2, the RAT had only one port for writing values,

you could only have one instruction that writes a register issue / start execution /

complete execution / retire per cycle.

c. If, in the algorithm we are calling T3, the PRF had only one write port, you could

only have one instruction that writes a register issue / start execution / complete

execution / retire per cycle.

d. In the algorithm we are calling T1, the RAT points to a reorder buffer entry / a

reservation station / a physical register / an execution unit.

e. Say that a certain wire is 1 mm long, 50nm wide and 60nm high in one process. We

then convert to a different (smaller) process and find that our wire is now 500μm

long, 40nm wide and 60nm high. If the capacitance of the wire were the same in both

cases, we’d expect the new wire to have more / less / almost the same delay as the

old wire. (For the VLSI folks: assume no skin or other effects, we’re just using a

simple RC model for delay.)

f. The branch target buffer is a(n) address / confidence / direction predictor that has

particular problems with function calls / conditional branches / returns from

functions / indirect branches*. To help with that case we might add a(n)

Translation Lookaside Buffer (TLB) / Reorder Buffer (RoB) / Alias Table List

Address Selector (ATLAS) / Return Address Stack (RAS).

g. In the algorithm we are calling T3, if you have 32 RoB entries, 16 architected

registers, 8 RS entries and a 4KB instruction-cache, you will not have a use for more

than 8 / 16 / 32 / 48 / 64 PRF entries.

h. Given a 4-KB four-way associative cache with 16-byte cache lines and a 32-bit

address space there will be __6____ bits used for the index. If that same cache were

direct-mapped you’d need ___20____ bits to be used for the tag.

 (For 1f “indirect branches” is also acceptable)

EECS 470 Fall 2009 Midterm Page 3/9

2. In the algorithm we’re calling T2, explain exactly when the RAT is updated by a committing

instruction. [4]

It is updated if the current RAT value for the associated Architected Register points to the

ROB entry of the committing instruction.

(Also could argue that when a mispredicted branch commits it will update the RAT)

3. In the algorithm we’re calling T1, explain exactly when the ARF is updated. [4]

It is updated if the current RAT value for the associated Architected Register points to the RS
entry of the committing instruction.

4. We are working with a non-pipelined, in-order machine. 10% of all instructions executed are

divide instructions. All non-divide instructions take one cycle. All divide instructions take 50

cycles. [7]

a. What is the CPI of this program on this processor? Show your work.

.9*1 (non-divide) +.1*5 (divide) = 5.9

b. What percent of time is spent just doing divides? Show your work.

5/5.9= 84.7%

c. What would the speedup be if we sped up divide by a factor of 2? Show your work.

Speedup=1/((1-f)+f/s))
Speedup=1/((1-.847)+.847/2) = 1.735

EECS 470 Fall 2009 Midterm Page 4/9

5. Identify two problems with the following code that could/will result in “compiler” errors or

potential synthesis issues. [8]

`define WIDTH 4

module updown_modulo (

clk , // Clock input

reset , // Reset input

enable , // Enable input

up_down , // Up Down input

count // Count output

);

 input clk;

 input reset;

 input enable;

 input up_down;

 output [`WIDTH-1 : 0] count;

 reg [`WIDTH-1 : 0] next_count;

 always @*

 begin

 if(up_down && enable)

 next_count=count+1;

 else if (!up_down && enable)

 next_count=count-1;

 end

 always @(posedge clk)

 begin

 if (reset)

 count <= #1 `WIDTH'b0;

 else

 count <= #1 next_count;

 end

endmodule

Problem #1: count needs to be declared as a reg.

Problem #2: next_count isn’t assigned on all paths. (this will simulate correctly but likely won’t

synthesize correctly…)

EECS 470 Fall 2009 Midterm Page 5/9

6. Consider the following programs:

Program A

R1=MEM[R2+0]

R0=R1+4

MEM[R2+4]=R2

R2=R3+4

MEM[R2+4]=R2

R3=R3+1
R0=R1+R2

R1=R1+4

Program B

R1=MEM[R2+0]

R2=R2+R2

MEM[R2+4]=R1
R0=R1+1

R3=R3+R2

R2=R2+R0

R2=R2+R1

MEM[R2+4]=R2

Program C

R1=MEM[R2+0]

R2=R3+4

R3=R0+R3

R1=R1+R1
R0=R0+R0

R2=R2+1

R3=R0+19

R0=R1+3

Say we have an out-of-order machine (using Tomasulo’s III) with 3 RSs, 6 ROB entries, 4

architected registers, and 9 PRF entries. Further, say the first load stalls at the head of the RoB

for a long time. All three programs will come to a halt waiting for the load to finish. For each

program circle the last instruction that will be placed in the ROB previous to the load finishing.

You are to assume an instruction stays in its RS until it completes execution. You must clearly

show/explain your work to receive credit. Specifically be sure to indicate why no other

instruction can be fetched. [15]

In Program A the RoB fills up first. At that point the RS only has the first 2 instructions left in it
and the PRF has only allocated 4 spaces (no destinations for the stores).

In Program B that instruction will fill up the RS. The first, 3 rd and 4th need an RS.

Note: One could argue that the store would NOT take up an RS entry as the RS might only be
used for address calculation and the store value might be handled in the load/store queue. If
you clearly made that argument and argued for the final instruction being R2=R2+R0 that’s
also acceptable. But it needs to be really really clear.

In Program C we have no RS problem (only the load and R1=R1+R1 is in the RS) but the PRF fills
up before the RoB does.

EECS 470 Fall 2009 Midterm Page 6/9

7. Consider the pipelined processor you did as part of project 3 but with the structural hazards

removed (so you can fetch and load/store in the same cycle). For a given program it is the

case that:

 35% of all instructions executed are loads,

 20% of all instructions executed are branches

o 75% of the branches are conditional and PC-relative

o The other 25% are unconditional and indirect

o Branches are taken 60% of the time (total)

 40% of all instructions are dependent on the instruction in front of them.

 Assume the program is quite long (millions and millions of instructions).

a. What would you expect the CPI to be for this program on this processor? Show your

work. [3]
CPI=1+branch penalty + data hazard penalty.
CPI=1+(.2*.60*3)+(.35*.4*1) = 1.5

b. Say that in an attempt to improve performance of the in-order machine you modify

the program so you resolve branches in the decode stage.

i. Accounting only for the changes in the control hazards, what will the CPI now

be? [2]
CPI=1+(.2*.60*1)+(.35*.4*1) = 1.26

ii. This change also introduces new data hazards. Carefully explain what hazards

are introduced and how they would need to be resolved. Estimate the new

CPI including the impact it has on control and data hazards. Clearly show and

explain your work. [6]
Because the load is resolving in decode, we need to have data ready for it by that point. Both

the conditional and indirect branches can have data hazards (one for the condition, one for the

location to branch to).

We are going to be adding a stall for each branch which is preceded by a dependent instruction.

Furthermore, if we are dependent on a load in front of us we’ll stall for 2 cycles rather than one.

Lastly, we also have to account for those branches which are dependent on a load 2 cycles ahead

of them but not dependent on the instruction immediately in front of them. We’ve got no

numbers for that, so we’ll just say that some fraction, Y, of all branches are data dependent on

the instruction 2 in front of them and not data dependent on the instruction immediately in

front of them.

CPI=1+branch penalty+ data hazard penalty.

 Branch penalty=.2*.6*1 or .12.

 Data hazard penalty= (A) load to EX stalls of non branches + (B) stalls due to branches

dependent on non-load in front of them + (C) stalls due to branches dependent on loads

in front of them + (D) stalls due to branches dependent two in front of them that aren’t

included in B or C. + (E) stalls due to branch squashes.

(.8*.35*.4*1)+(.2*.65*1*.4)+(.2*.35*2*.4) + (.2*.35*Y)+(.2*.6*1)=1.34+.07Y

EECS 470 Fall 2009 Midterm Page 7/9

8. Consider a local history predictor where the Branch History Table has 32 entries each 2 bits

in length and the Pattern History Table consists of a 1-bit predictor. Neither is tagged. [13]

a. How many bits of memory are used in the BHT? The PHT? [3]

64, 4

b. Say that a single branch is being taken 3 times in a row and then is not taken 3 times

in a row and repeats this pattern forever (T,T,T,N,N,N,T,T,T,N,N,N, etc.) Assuming

there is no aliasing of any kind, what will be the steady-state prediction rate for this

branch? Justify your answer [3]

That pattern results in TT twice, the first time the actual result is taken, the second

time it’s not taken. Same with NN. So those cases are all wrong. That leaves us with

NT and TN both of which only happen once per 6 branches and so are right. 33.3%

prediction rate.

c. Say that a single branch is being taken 4 times in a row and then is not taken 4 times

in a row and repeats this pattern forever. Assuming there is no aliasing of any kind,

what will be the steady-state prediction rate for this branch? Justify your answer [3]

Now we get TT three times, the first two the actual result is taken, the last time not

taken. So we get the 2nd of those right. Same with NN. NT and TN again each

appear once. So 50%.

d. Identify a pattern of taken and not taken branches that when repeated forever will

result in a 0% prediction rate (again, assuming no aliasing of any kind). Your answer

should be of a form (T,N,T). [4]

(N,N,N,T,T,T,N,T)

EECS 470 Fall 2009 Midterm Page 8/9

9. Consider the following state of a machine implementing what we’ve called Tomasulo’s third

algorithm, where we are using an RRAT rather than back-pointers.

RAT ROB RRAT
Arch

Reg #

Phy.

Reg #

 Buffer

Number

PC Executed? Dest.

PRN

Dest

ARN

 Arch

Reg

Phy.

Reg #

0 4 3 0 0 NY 6 1 HEAD 0 4

1 87 1 4 Y 5 2 1 367

2 952 2 8 NY 7 1 2 25

3 1 3 12 Y -- -- 3 1

4 0 4 16 Y 9 2 4 0

 5 20 N 8 1

 6 40 Y 2 2 TAIL

 7 44 N 3 0

 8

RS PRF
RS# Op

Type

Op1

Ready?

Op1

PRN/value

Op2

Ready?

Op2

PRN/value

Dest

PRN

ROB Phy

Reg

Value Free Valid

0 Add NY 6,4 NY 6,4 7 2 0 6 N Y

1 Add N 7 Y 9 8 5 1 5 N Y

2 Add Y 3 Y 1 6 0 2 4,10 NYN YNY

3 Add Y 8 Y 10 3 7 3 3 NYN YN

4 4 2 N Y

 5 9 N Y

 6 11,4 NY NYN

 7 1,8 N NY

 8 0 NY N

 9 7 NY YN

 10 12 Y N

 11 5 Y N

 12 -1 Y N

Say that the instruction in ROB #3 is a branch and it was mis-predicted: the next PC should have been 40.

Say that the instruction in memory location 40 is R2=R1+R0 and in 44 is R0=R1+R2. Update the

machine to the state where the branch has left the RoB, and the instructions at memory 40 has issued and

executed, but not committed while the one at location 44 has issued but not executed. When faced with

an arbitrary decision, just be sure to make a legal choice. Be sure to update the head and tail pointers!

[20]

On the following page is an extra copy of this state. You may use this one or the one on the next page

but be sure to cross out (with a BIG X) the one you don’t want graded.

KEY:
 Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes;

otherwise it is the Physical Register Number that is being waited upon.

 Op2 PRN/value is the same as above but for the second argument.

 Dest. PRN is the destination Physical Register Number.

 Dest. ARN is the destination Architectural Register Number.

 ROB is the associated ROB entry for this instruction.

 Free/Valid indicates if the PRF entry is currently available for allocation

and if the valid in it is valid. A free entry should be marked as invalid.

EECS 470 Fall 2009 Midterm Page 9/9

Consider the following state of a machine implementing what we’ve called Tomasulo’s third algorithm,

where we are using an RRAT rather than back-pointers.

RAT ROB RRAT
Arch

Reg #

Phy.

Reg #

 Buffer

Number

PC Executed? Dest.

PRN

Dest

ARN

 Arch

Reg

Phy.

Reg #

0 4 0 0 N 6 1 HEAD 0 4

1 8 1 4 Y 5 2 1 3

2 9 2 8 N 7 1 2 2

3 1 3 12 Y -- -- 3 1

4 0 4 16 Y 9 2 4 0

 5 20 N 8 1

 6 TAIL

 7

 8

RS PRF
RS# Op

Type

Op1

Ready?

Op1

PRN/value

Op2

Ready?

Op2

PRN/value

Dest

PRN

ROB Phy

Reg

Value Free Valid

0 Add N 6 N 6 7 2 0 6 N Y

1 Add N 7 Y 9 8 5 1 5 N Y

2 Add Y 3 Y 1 6 0 2 4 N Y

3 3 3 N Y

4 4 2 N Y

 5 9 N Y

 6 11 N N

 7 1 N N

 8 0 N N

 9 7 N Y

 10 12 Y N

 11 5 Y N

 12 -1 Y N

Say that the instruction in ROB #3 is a branch and it was mis-predicted: the next PC should have been 40.

Say that the instruction in memory location 40 is R2=R1+R0 and in 44 is R0=R1+R2. Update the

machine to the state where the branch has left the RoB, and the instructions at memory 40 has issued and

executed, but not committed while the one at location 44 has issued but not executed. When faced with

an arbitrary decision, just be sure to make a legal choice. Be sure to update the head and tail pointers!

[20]

You may use this one or the one on the previous page but be sure to cross out (with a BIG X) the one

you don’t want graded.

KEY:
 Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes;

otherwise it is the Physical Register Number that is being waited upon.

 Op2 PRN/value is the same as above but for the second argument.

 Dest. PRN is the destination Physical Register Number.

 Dest. ARN is the destination Architectural Register Number.

 ROB is the associated ROB entry for this instruction.

 Free/Valid indicates if the PRF entry is currently available for allocation

and if the valid in it is valid. A free entry should be marked as invalid.

