Name: Ke	y	Uname:	Key
----------	---	--------	-----

You have 20 minutes for this quiz. The quiz is closed notes/closed book. If you should finish early, you are welcome to turn in your quiz and step out of the room until the lecture starts. **There are 2 pages to this quiz.**

I have neither given nor received aid on this quiz, nor observed anyone else doing so.

- 1. Consider the following access pattern: A, B, C, B, A. Assume that A, B, and C are memory addresses each of which are in a different block of memory. Further, assume A, B and C are generated in a uniformly random way.
 - a. What is the probability that the second instance of "B" will be a hit on an 8-line direct-mapped cache? Briefly show your work. [10]

(7/8)=0.875

b. What is the probability that the second instance of "A" will be a hit on a 4-line 2-way associative cache? Again, briefly show your work. [15]

B and C have to go to the same set as A to get a miss. The odds of that are $(1/2)^2$. So the odds of a hit is $\frac{3}{4}$ or 0.75.

2. Consider a virtually-addressed cache that is used in a MESI-bus system. What additional issue would this type of cache create when snooping? Your answer must be 20 words or less. [10]

You'll need to convert the bus's physical address to a virtual address (reverse TLB lookup).

- 3. Consider a processor which, when running a given application performs 2 billion loads and 1 billion stores per second. Assume the following is true:
 - The processor's multi-level cache system gets a 97% hit rate on both loads and stores.
 - Cache lines are 32-bytes in size
 - There is no prefetching and the instruction cache never misses.
 - The cache is *write-thru* and write-allocate.
 - There are no coherence misses.
 - All loads and stores are to 4-byte values.
 - a. What is the read bandwidth (bytes/second) on the bus? Show your work. [10]

2*10⁹ loads * 0.03 transactions/load * 32 bytes/transaction +

1*10⁹ stores * 0.03 transactions/load * 32 bytes/transaction =

2.88 billion bytes read per second.

b. What is the write bandwidth (bytes/second) on the bus? Show your work. [5]

All stores result in a 4-byte write to memory. So, 4 billion bytes written/second.

- 4. Consider a case of having 3 processors using a snoopy MESI protocol where the memories can snarf data. All three have a 2-line direct-mapped cache with <u>each line consisting of 8 bytes</u>. The caches begin with all lines marked as invalid. Fill in the following tables indicating
 - If the processor gets a hit or a miss in its cache
 - If a HIT or HITM (or nothing) occurs on the bus during snoop.
 - What bus transaction(s) (if any) the processor performs (BRL, BWL, BRIL, BIL)
 - For misses only, indicate if the miss is compulsory, capacity, conflict, or coherence. A coherence miss is one where there would have been a hit, had some other processor not interfered.

Finally, indicate the state of the processor after all of these memory operations have completed. The operations occur in the order shown. **[50 points, -2 per wrong or blank, minimum of 0]**

Processor	Address	Read/ Write	Cache Hit/Miss	Bus transaction(s)	HIT/ HITM	State after transaction	"4C" miss type (if any)
1	0x100	Read	Miss	BRL		Е	Compulsory
1	0x008	Write	Miss	BRIL		М	Compulsory
1	0x018	Read	Miss	BRL/BWL		Е	Compulsory
1	0x100	Write	Hit			М	
2	0x018	Read	Miss	BRL	HIT	S	Compulsory
2	0x100	Read	Miss	BRL	HITM	S	Compulsory
2	0x01F	Write	Miss	BIL	HIT	М	Coherence
1	0x018	Read	Miss	BRL	HITM	S	Coherence
3	0x01F	Write	Miss	BRIL	HIT	М	Compulsory
1	0x01F	Read	Miss	BRL	HITM	S	Coherence

Final state:

	<u>Proc 1</u>			Proc 2			<u>Proc 3</u>	
	Address	State		Address	State		Address	State
Set 0	0x100	S	Set 0	0x100	S	Set 0		
Set 1	0x018	S	Set 1	0x018	Ι	Set 1	0x018	S

Notes:

- In the final state we treat empty and invalid cache lines as equivalent.
- The answers only store the address matching the start of the cache line, but will accept any address in the correct line (Procs 1 / 3: 0x018 vs 0x01F)
- Bus transactions are those originating from the processor in each line, the effect of another processor responding with data to the requesting proc is handled by the HIT/HITM column.